Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schallisolierung mithilfe von Quantenphysik

03.07.2015

Dass der Weg von der abstrakten Theorie zur handfesten Anwendung nicht immer weit sein muss, zeigten Sebastian Huber und Kollegen. Ihre mechanische Umsetzung eines quantenmechanischen Phänomens könnte schon bald in der Schallisolierung zum Einsatz kommen.

Doughnuts, Strom und Quantenphysik – was für Laien wie eine absurde Aneinanderreihung von Begriffen aussieht, ist für Sebastian Huber eine Art Beschreibung seines Arbeitsgebiets. ETH-Professor Huber beschäftigt sich als theoretischer Physiker seit Jahren mit so genannten topologischen Isolatoren, also mit Materialien, deren Fähigkeit, elektrischen Strom zu leiten, einen topologischen Ursprung hat.


Mechanisches Modell aus 270 Pendeln, die über Federn miteinander verbunden sind. Die Pendel verhalten sich in diesem Modell wie ein topologischer Isolator.

Heidi Hostettler / ETH Zürich

Was dabei «topologisch» bedeutet, kann man sich am einfachsten anhand eines Doughnuts vorstellen, der durch Ziehen, Dehnen und Verformen in eine Kaffeetasse verwandelt werden kann – ohne dass man ihn zerschneiden muss. Doughnut und Kaffeetasse sind in diesem Sinne topologisch gesehen identisch, und wendet man dasselbe Prinzip auf die quantenmechanischen Wellenfunktionen von Elektronen in einem Festkörper an, so kommt man auf das Phänomen des topologischen Isolators.

Das ist Quantenphysik für Fortgeschrittene, hoch kompliziert und weit von der Alltagswelt entfernt. Dennoch ist es Professor Huber und seinen Mitarbeitern jetzt gelungen, diese abstrakten Ideen sehr konkret zu machen und, sozusagen auf dem kurzen Dienstweg, mit Kollegen aus verschiedenen Fachbereichen quer durch die ETH bis hin zu möglichen Anwendungen im Ingenieursbereich zu kommen.

Von den Quanten zur Mechanik

Am Anfang stand dabei für Huber eine simple Frage: Kann man das Prinzip eines topologischen Isolators auf mechanische Systeme übertragen? Eigentlich sind die Quantenphysik und die Mechanik zwei verschiedene Welten. In der Quantenwelt können Teilchen durch Barrieren «tunneln» und sich gegenseitig als Wellen auslöschen oder verstärken, wogegen es die alltägliche Mechanik eher mit fallenden Körpern oder der Statik von Brücken zu tun hat.

Huber und seine Kollegen erkannten allerdings, dass man die mathematischen Formeln, welche die Quanteneigenschaften eines topologischen Isolators beschreiben, so umformen kann, dass sie aussehen wie die eines wohlbekannten mechanischen Systems – nämlich einer Reihe von schwingenden Pendeln.

Insbesondere sagten die mechanischen Formeln genau wie ihr quantenmechanisches Pendant sogenannte Randzustände voraus. Bei diesen Anregungszuständen fliesst entlang der Ränder des Materials elektrischer Strom (beziehungsweise eine mechanische Schwingung), wogegen das Innere des Systems vollkommen unbeteiligt bleibt. «Theoretisch war das ein schönes Ergebnis», sagt Huber, «doch am ehesten kann man die Leute natürlich überzeugen, wenn man das praktisch umsetzt».

Gesagt, getan. Gemeinsam mit ETH-Technikern bauten Huber und sein Student ein mechanisches Modell aus 270 in einem rechteckigen Gitter angeordneten Pendeln, die über kleine Federn miteinander verbunden sind. Zwei der Pendel können dabei mechanisch angeregt, also mit einer bestimmten Frequenz und Stärke hin und her geschüttelt werden.

Durch die Federkopplungen werden nach und nach auch die anderen Pendel in Schwingung versetzt. Bei einer bestimmten Anregungsfrequenz sahen die Physiker schliesslich, was sie sich erhofft hatten: Die Pendel innerhalb des Rechtecks standen still, wogegen diejenigen am Rand rhythmisch schwangen und so eine Art «Welle» um das Rechteck herum floss. Die gekoppelten Pendel verhielten sich also tatsächlich wie ein topologischer Isolator.

Roboterarme und Schall-Linsen

Schon bald könnte sich das, was für ETH-Professor Huber zunächst ein Hirngespinst und dann eine nette Spielerei war, als nützliches Werkzeug erweisen. Die mechanischen Randzustände der gekoppelten Pendel sind nämlich sehr robust – «topologisch geschützt», wie es in der Fachsprache heisst – und bleiben auch dann bestehen, wenn man Unordnung in die Reihe der Pendel bringt oder sogar einen Teil des Rechtecks einfach entfernt.

Solche Eigenschaften wären beispielsweise für die Schall- und Vibrationsisolierung interessant, etwa in der industriellen Produktion, wo Roboterarme exakt und zitterfrei Bauteile platzieren müssen. Zudem sind Materialien denkbar, die Schall nur in eine Richtung transportieren oder wie eine optische Linse bündeln.

«Solche Anwendungen sind eine grosse Herausforderung, aber durchaus realistisch», meint Chiara Daraio, ETH-Professorin für Mechanik und Materialien. Dazu freilich müssen die mechanischen Systeme zunächst einmal kompakter werden – Hubers Pendel sind immerhin einen halben Meter lang und wiegen je ein halbes Kilo. Die Ingenieure sind bereits dabei, ein Gerät zu bauen, das ohne die vielen Pendel auskommt und zudem nur wenige Zentimeter misst.


Literaturhinweis

Süsstrunk R, Huber SD: Observation of phononic helical edge states in a
mechanical topological insulator. Science 2015, 349: 47-50, doi: 10.1126/science.aab0239 [http://dx.doi.org/10.1126/science.aab0239]

News und Medienstelle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik