Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schallisolierung mithilfe von Quantenphysik

03.07.2015

Dass der Weg von der abstrakten Theorie zur handfesten Anwendung nicht immer weit sein muss, zeigten Sebastian Huber und Kollegen. Ihre mechanische Umsetzung eines quantenmechanischen Phänomens könnte schon bald in der Schallisolierung zum Einsatz kommen.

Doughnuts, Strom und Quantenphysik – was für Laien wie eine absurde Aneinanderreihung von Begriffen aussieht, ist für Sebastian Huber eine Art Beschreibung seines Arbeitsgebiets. ETH-Professor Huber beschäftigt sich als theoretischer Physiker seit Jahren mit so genannten topologischen Isolatoren, also mit Materialien, deren Fähigkeit, elektrischen Strom zu leiten, einen topologischen Ursprung hat.


Mechanisches Modell aus 270 Pendeln, die über Federn miteinander verbunden sind. Die Pendel verhalten sich in diesem Modell wie ein topologischer Isolator.

Heidi Hostettler / ETH Zürich

Was dabei «topologisch» bedeutet, kann man sich am einfachsten anhand eines Doughnuts vorstellen, der durch Ziehen, Dehnen und Verformen in eine Kaffeetasse verwandelt werden kann – ohne dass man ihn zerschneiden muss. Doughnut und Kaffeetasse sind in diesem Sinne topologisch gesehen identisch, und wendet man dasselbe Prinzip auf die quantenmechanischen Wellenfunktionen von Elektronen in einem Festkörper an, so kommt man auf das Phänomen des topologischen Isolators.

Das ist Quantenphysik für Fortgeschrittene, hoch kompliziert und weit von der Alltagswelt entfernt. Dennoch ist es Professor Huber und seinen Mitarbeitern jetzt gelungen, diese abstrakten Ideen sehr konkret zu machen und, sozusagen auf dem kurzen Dienstweg, mit Kollegen aus verschiedenen Fachbereichen quer durch die ETH bis hin zu möglichen Anwendungen im Ingenieursbereich zu kommen.

Von den Quanten zur Mechanik

Am Anfang stand dabei für Huber eine simple Frage: Kann man das Prinzip eines topologischen Isolators auf mechanische Systeme übertragen? Eigentlich sind die Quantenphysik und die Mechanik zwei verschiedene Welten. In der Quantenwelt können Teilchen durch Barrieren «tunneln» und sich gegenseitig als Wellen auslöschen oder verstärken, wogegen es die alltägliche Mechanik eher mit fallenden Körpern oder der Statik von Brücken zu tun hat.

Huber und seine Kollegen erkannten allerdings, dass man die mathematischen Formeln, welche die Quanteneigenschaften eines topologischen Isolators beschreiben, so umformen kann, dass sie aussehen wie die eines wohlbekannten mechanischen Systems – nämlich einer Reihe von schwingenden Pendeln.

Insbesondere sagten die mechanischen Formeln genau wie ihr quantenmechanisches Pendant sogenannte Randzustände voraus. Bei diesen Anregungszuständen fliesst entlang der Ränder des Materials elektrischer Strom (beziehungsweise eine mechanische Schwingung), wogegen das Innere des Systems vollkommen unbeteiligt bleibt. «Theoretisch war das ein schönes Ergebnis», sagt Huber, «doch am ehesten kann man die Leute natürlich überzeugen, wenn man das praktisch umsetzt».

Gesagt, getan. Gemeinsam mit ETH-Technikern bauten Huber und sein Student ein mechanisches Modell aus 270 in einem rechteckigen Gitter angeordneten Pendeln, die über kleine Federn miteinander verbunden sind. Zwei der Pendel können dabei mechanisch angeregt, also mit einer bestimmten Frequenz und Stärke hin und her geschüttelt werden.

Durch die Federkopplungen werden nach und nach auch die anderen Pendel in Schwingung versetzt. Bei einer bestimmten Anregungsfrequenz sahen die Physiker schliesslich, was sie sich erhofft hatten: Die Pendel innerhalb des Rechtecks standen still, wogegen diejenigen am Rand rhythmisch schwangen und so eine Art «Welle» um das Rechteck herum floss. Die gekoppelten Pendel verhielten sich also tatsächlich wie ein topologischer Isolator.

Roboterarme und Schall-Linsen

Schon bald könnte sich das, was für ETH-Professor Huber zunächst ein Hirngespinst und dann eine nette Spielerei war, als nützliches Werkzeug erweisen. Die mechanischen Randzustände der gekoppelten Pendel sind nämlich sehr robust – «topologisch geschützt», wie es in der Fachsprache heisst – und bleiben auch dann bestehen, wenn man Unordnung in die Reihe der Pendel bringt oder sogar einen Teil des Rechtecks einfach entfernt.

Solche Eigenschaften wären beispielsweise für die Schall- und Vibrationsisolierung interessant, etwa in der industriellen Produktion, wo Roboterarme exakt und zitterfrei Bauteile platzieren müssen. Zudem sind Materialien denkbar, die Schall nur in eine Richtung transportieren oder wie eine optische Linse bündeln.

«Solche Anwendungen sind eine grosse Herausforderung, aber durchaus realistisch», meint Chiara Daraio, ETH-Professorin für Mechanik und Materialien. Dazu freilich müssen die mechanischen Systeme zunächst einmal kompakter werden – Hubers Pendel sind immerhin einen halben Meter lang und wiegen je ein halbes Kilo. Die Ingenieure sind bereits dabei, ein Gerät zu bauen, das ohne die vielen Pendel auskommt und zudem nur wenige Zentimeter misst.


Literaturhinweis

Süsstrunk R, Huber SD: Observation of phononic helical edge states in a
mechanical topological insulator. Science 2015, 349: 47-50, doi: 10.1126/science.aab0239 [http://dx.doi.org/10.1126/science.aab0239]

News und Medienstelle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit