Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schärfster Radioblick in ferne Sternentstehungsgebiete

14.06.2017

Wie in menschlichen Zivilisationen schwankte auch bei Sternen die Geburtenrate im Lauf der Zeit. Als das rund 13,8 Milliarden Jahre alte Universum etwa 2,5 Milliarden Jahre jung war, produzierten Galaxien am meisten Sterne. Das hat ein internationales Team von Astronomen unter Beteiligung des Argelander-Instituts für Astronomie der Universität Bonn und des Max-Planck-Instituts für Astronomie in Heidelberg präzisiert. Mit dem Karl G. Jansky Very Large Array Telescope in New Mexiko (USA) gelang den Wissenschaftlern eine Durchmusterung der Galaxien mit den schärfsten und tiefsten Radiobildern, die jemals über eine große Himmelsregion gewonnen wurden.

Das internationale Team beobachtete dabei fast 11.000 Galaxien auf einer Fläche von rund neun Vollmonden. Mittels dieser einzigartigen Daten kann der Lebenszyklus von Galaxien in den vergangenen 13 Milliarden Jahren des Universums rekonstruiert werden. „Das Radiolicht einer Galaxie gibt uns Auskunft über mindestens zwei sehr wichtige Dinge“, sagt die Projektleiterin Prof. Dr. Vernesa Smolčić von der Universität Zagreb.


Galaxien: Grün sind der optisch sichtbare und der nahe Infrarotbereich dargestellt. Nur im Radiowellenbereich (rot) sind die verborgenen Aktivitäten der zentralen Schwarzen Löcher zu sehen.

Quelle: Dr. Eleni Vardoulaki und Eric Faustino Jimenez-Andrade (Argelander-Institut)/VLA-COSMOS Team

„Radiolicht hilft uns, durch Staubwolken zu sehen und zeigt so neue Sterne, die sich in Galaxien bilden. Es kann uns aber auch hochenergetische Signaturen von wachsenden supermassiven Schwarzen Löchern aufzeigen.“ Radiolicht wird im Unterschied zum optischen Licht, das unsere Augen direkt sehen, nicht durch die großen Wolken von interstellarem Staub blockiert. Dies bedeutet, dass Radiowellen verwendet werden können, um neugeborene Sterne in Galaxien in einer Weise zu entdecken, die mit anderen Wellenlängen nicht möglich ist.

Das VLA-COSMOS-Projekt begann unter Leitung von Dr. Eva Schinnerer vom Max-Planck Institut für Astronomie Heidelberg bereits im Jahr 2004 mit einer ersten Durchmusterung des „COSMOS“ genannten Himmelsgebiets. Der große wissenschaftliche Erfolg dieses Projekts veranlasste das Team unter Leitung von Prof. Smolčić, die seinerzeit am Argelander-Institut für Astronomie der Universität Bonn forschte, eine weitere große Durchmusterung zu beantragen. Sie wurde durch die zwischenzeitlichen technischen Verbesserungen des Karl G. Jansky Very Large Array (VLA) Teleskops in New Mexico (USA) möglich.

Verknüpfung von Daten verschiedener Teleskope

Die Astronomen kombinierten die neuen Radiobilder mit optischen, Infrarot- und Röntgendaten von vielen der weltweit führenden Teleskope. „Diese Datenverknüpfung bei unterschiedlichen Wellenlängen erlaubte uns, die Eigenschaften von Galaxien zu untersuchen, deren Radiowellen uns bis nahe der Anfänge des Universums vor etwa 13 Milliarden Jahren schauen lassen“, sagt Dr. Alexander Karim, der am Argelander-Institut für Astronomie der Universität Bonn für die VLA-COSMOS-Durchmusterung zuständig ist.

Das Team fand heraus, dass Galaxien die meisten Sterne produzierten, als das Universum etwa 2,5 Milliarden Jahre alt war - ein Fünftel seines jetzigen Alters. Zu dieser Zeit entstanden etwa ein Viertel aller neugeborenen Sterne in massereichen Galaxien. Die Ergebnisse zeigen, dass bis zu 20 Prozent mehr Sternbildung in Galaxien im frühen Universum stattfand, als bislang angenommen wurde. Darüber hinaus sind sehr entfernte Galaxien mit besonders intensiver Sternbildung – so genannte Submillimeter-Galaxien – größer als bisher erwartet. Der Grund dafür ist noch nicht vollständig geklärt, aber er könnte mit Gravitationswechselwirkungen, Kollisionen oder sogar Verschmelzungen von Galaxien zusammenhängen.

Supermassive Schwarze Löcher heizen Galaxien auf

Die neuen Radiodaten haben auch einen einzigartigen Einblick in Galaxien mit aktiv wachsenden, supermassereichen Schwarzen Löchern in ihren Zentren ermöglicht. Materie, die ein solches Schwarzes Loch umkreist und die schließlich hineingezogen wird, kann riesige Mengen an Energie freisetzen. Mit den neuen Radiodaten entdeckten die Astronomen mehr als 1000 solcher Erscheinungen. Die besondere Struktur ihrer Radioemission verrät die verborgene Aktivität ihrer Schwarzen Löcher. Sie sind besonders interessant, da sie das Schicksal ihrer Heimatgalaxien und ihrer kosmischen Umgebung entscheidend beeinflussen können.

Die Astronomen verglichen den durch kosmologische Computersimulationen vorhergesagten Glutofen mit den Ergebnissen der neuen Radiodaten und fanden eine sehr gute Übereinstimmung. „Physikalische Prozesse, die mit dem wachsenden supermassiven Schwarzen Loch verbunden sind, können das Gas in und um die Galaxie aufheizen, die Bildung neuer Sterne verhindern und somit das eigenständige Wachstum der Galaxien stoppen“, sagt Dr. Schinnerer vom MPI für Astronomie in Heidelberg. Dr. Karim ergänzt: „Die VLA-COSMOS-Durchmusterung stellt einen wichtigen Meilenstein auf unserem Weg zu den großflächigen Himmelsbeobachtungen der nächsten Generation dar“.

Publikation: The VLA-COSMOS 3 GHz Large Project, „Astronomy & Astrophysics“

Kontakte für die Medien:

Dr. Alexander Karim
Argelander-Institut für Astronomie
Universität Bonn
+49 (0)228 73 3668
E-Mail: karim@astro-uni-bonn.de

Prof. Dr. Frank Bertoldi
Argelander-Institut für Astronomie
Universität Bonn
+49 (0)228 73 6789
E-Mail: bertoldi@astro-uni-bonn.de

Dr. Eleni Vardoulaki
Argelander-Institut für Astronomie
Universität Bonn
+49 (0)228 73 5659
E-Mail: eleniv@astro.uni-bonn.de

Dr. Eva Schinnerer
Max-Planck-Institut für Astronomie Heidelberg
+49 (0)6221 528 293
E-Mail: schinner@mpia.de

Weitere Informationen:

http://www.aanda.org/component/toc/?task=topic&id=752 Publikation im Internet

https://www.youtube.com/watch?v=G9Cs6UDHKak Video: The VLA-COSMOS 3 GHz Large Project

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie