Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauber bleiben - Hochleistungs-Plasmen für ITER

03.03.2010
Die Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching ist die weltweit einzige Anlage, die mit einem vollständig mit dem Metall Wolfram bedeckten Gefäß experimentieren kann.

Jetzt konnte gezeigt werden, dass die Vorteile dieser Wolfram-Wand auch in den Hochleistungsplasmen realisierbar sind, mit denen der Testreaktor ITER arbeiten soll - ein vielversprechendes Ergebnis für den ITER-Betrieb, da ASDEX Upgrade bezüglich wichtiger Vergleichsgrößen dichter als alle anderen Anlagen an ITER herankommt.

Forschungsziel des IPP ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Die Machbarkeit soll mit 500 Megawatt Fusionsleistung der internationale Experimentalreaktor ITER (lat.: der Weg) zeigen, der zurzeit in weltweiter Zusammenarbeit in Cadarache/Südfrankreich entsteht. Hier muss es gelingen, den Brennstoff - ein dünnes ionisiertes Wasserstoffgas, ein "Plasma" - berührungsfrei in einem Magnetfeldkäfig einzuschließen und auf Zündtemperaturen über 100 Millionen Grad aufzuheizen.

Eine der großen Herausforderungen ist es, eine verträgliche Wechselwirkung zwischen dem Plasmagefäß und dem darin schwebenden heißen Plasma zu erreichen. Im IPP setzt man auf eine Gefäßwand aus Wolfram, dem Metall mit dem höchsten Schmelzpunkt (siehe IPP-Info 11/2007). Die Garchinger Fusionsanlage ASDEX Upgrade ist die einzige weltweit, die mit einem vollständig mit Wolfram bedeckten Gefäß arbeitet. Nach zweijährigem Experimentieren ist es nun gelungen, die erwarteten Vorteile der Wolfram-Wand zu bestätigen. Zugleich konnte man zeigen, dass sie mit den für ITER gewünschten günstigen Plasmazuständen - zum Beispiel mit dem im IPP entwickelten "High Confinement-Regime" - vereinbar ist.

Saubere Plasmen
Zunächst war zu zeigen, dass mit der neuen Wolfram-Wand saubere Plasmen erreichbar sind. Energiereiche Plasmateilchen können nämlich Atome aus der Wand herausschlagen, die dann in das Plasma eindringen und es verunreinigen. Anders als der leichte Wasserstoff sind die schweren Atome aus der Wand auch bei den hohen Fusionstemperaturen nicht vollständig ionisiert. Je mehr Elektronen noch an die Atomkerne gebunden sind, desto mehr Energie entziehen sie dem Plasma und strahlen sie als Ultraviolett- oder Röntgenlicht wieder ab. Auf diese Weise kühlen sie das Plasma ab, verdünnen es und verringern die Fusionsausbeute.

Die Wissenschaftler an ASDEX Upgrade konnten nun zeigen, dass bei richtig geführter Entladung kaum Wolfram-Teilchen aus der Wand in das Plasmazentrum vordringen. Im Gegenteil: Die mit der neuen Wand erzielbaren sauberen Plasmen können bei hoher Heizleistung zu einer zu starken Belastung einzelner Wandbereiche führen. Insbesondere der "Divertor" - speziell ausgerüstete Prallplatten am Boden des Gefäßes, auf welche die Plasma-Randschicht magnetisch hingelenkt wird - könnte dann beschädigt werden.

Gut isolierte, stabile Plasmen
Um dem entgegenzuwirken, nutzte man eine bekannte Technik: Damit nicht die gesamte Energie in Form von schnellen Plasmateilchen auf die Divertorplatten einschlägt, wurden in die Randschicht des Plasmas gezielt Verunreinigungen eingeblasen. Durch den Kontakt mit dem heißen Plasma werden sie zum Leuchten angeregt und schaffen so die Energie auf sanfte Weise und über die Gefäßwand verteilt als Ultraviolett- oder Röntgenlicht aus dem Plasma. Anders als im heißen Plasmazentrum, wo diese abkühlende Wirkung vermieden werden muss, ist sie am Rand des Plasmas sehr nützlich: Bevor die schnellen Plasmateilchen auf den Divertorplatten ankommen, haben sie ihre Energie bereits an die Verunreinigungsatome verloren. Entgegen früherer Erfahrungen erwies sich in Kombination mit der Wolfram-Wand insbesondere Stickstoff als taugliches Verunreinigungsmaterial.

Mit seiner Hilfe ließen sich über alle Erwartung gute Plasmazustände erreichen: Trotz sehr hoher Heizleistung von 20 Megawatt sank die Belastung der Divertorplatten dank der Stickstoff-Kühlung auf ein verträgliches Niveau. Im Zentrum wiesen die Plasmen hohe Reinheit und gute Wärmeisolation auf. Der Energieinhalt der Plasmen war einer der höchsten, der je in der Anlage erreicht wurde. Damit sind alle ITER-Anforderungen vorbildlich erfüllt. Dies ist umso erfreulicher, als ASDEX Upgrade bezüglich der hierfür wichtigsten Vergleichsgröße - die auf den Plasmaradius bezogene Heizleistung - dichter als alle anderen Anlagen weltweit an ITER herankommt.

Sogar die gefürchteten ELM-Instabilitäten verloren in den Stickstoff-gekühlten Plasmen ihren Schrecken: Diese Edge Localized Modes sind Rand-Instabilitäten des Plasmas. Sie wirken besonders belastend für den Divertor, weil sie Plasmateilchen und -energien gebündelt und schlagartig auf die Platten werfen. Für den großen ITER sind sie eine erhebliche Herausforderung. Andererseits sorgen die ELMs auch für das Ausschleudern von Verunreinigungen aus dem Plasma. Statt der üblichen starken ELM-Einschläge wünscht man sich deshalb schwächere und dafür häufigere ELMs. Genau dies ist in den Stickstoff-gekühlten Plasmen festzustellen.

Weitere Pläne
Da noch nicht gesichert ist, dass sich das Verfahren auf größere Anlagen wie ITER oder ein künftiges Fusionskraftwerk übertragen lässt, sollen an ASDEX Upgrade auch andere Methoden der ELM-Kontrolle untersucht werden: Zurzeit werden zusätzliche magnetische Kontrollspulen in das Plasmagefäß eingebaut. Ab August will man mit ihrer Hilfe die ELMs auf magnetische Weise bändigen. Bis 2012 sollen insgesamt 24 Kontrollspulen eingebaut werden - ein System, wie es ganz ähnlich auch für ITER vorgesehen ist.

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten