Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In sanften Schüben zu Vesta

27.07.2011
Die Reise in den Planetoidengürtel verlief für die Raumsonde Dawn auf verschlungenen Pfaden
Die Raumsonde Dawn ist vergangene Woche in eine Bahn um den Kleinplaneten Vesta eingeschwenkt. Der Kleinplanet ist 2,3-mal weiter von der Sonne entfernt als die Erde. Um ihn zu erreichen, nutzte Dawn die Kraft der Gravitation. Und ein Ionentriebwerk.

Text: Helmut Hornung
Nach einer Flugstrecke von 2,8 Milliarden Kilometern ist die Reise vorläufig zu Ende. 2,8 Milliarden Kilometer, das entspricht 3646-mal der Entfernung von der Erde zum Mond und zurück – oder 70000-mal um unseren Planeten. Astronomisch viel! Dawn benötigte dafür drei Jahre und nicht ganz zehn Monate. Dabei nahm das am 27. September 2007 gestartete Raumfahrzeug nicht etwa direkt Kurs auf sein Ziel im Asteroidengürtel zwischen den Planeten Mars und Jupiter. Und auf die Schubkraft von starken Raketentriebwerken – wie sie etwa die Space Shuttles 30 Jahre lang ins All gehievt haben – konnte die Sonde auch nicht bauen. Vielmehr setzten die Ingenieure der US-amerikanischen Raumfahrtbehörde Nasa auf eine neue Technik und die bewährte Kraft der Natur.

Unkonventioneller Antrieb: Ein Ionentriebwerk verleiht Dawn den nötigen Schub. © Nasa/JPL

So spiralte sich Dawn immer weiter hinaus ins Sonnensystem und passierte am 18. Februar 2009 den Nachbarplaneten Mars in nur 565 Kilometer Abstand. Dabei zapfte sie von dem Roten Planeten einen wichtigen „Treibstoff“ ab: Schwerkraft. Denn während des sogenannten Swing-by-Manövers – auch Gravity Assist genannt – flog Dawn durch das Gravitationsfeld des Mars. Dabei änderten sich die Bahn der Raumsonde sowie ihre Reisegeschwindigkeit. Die Ingenieure hatten das Rendezvous so berechnet, dass Dawn Tempo aufnahm und sich danach noch weiter in den Weltraum hinausschraubte. (Übrigens beeinflusste der Gravity Assist auch die Bahn des Mars – allerdings um einen unmessbaren kleinen Betrag.)

Das Manöver am Mars bot die Gelegenheit, die wissenschaftlichen Instrumente zu testen, darunter auch zwei Kameras, deren Bau und Entwicklung die Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau nahe Göttingen leiteten. Schon 2009 zeigte sich, dass diese Framing Cameras (FCs) einwandfrei arbeiteten. Der Name ergibt sich aus dem eingebauten lichtempfindlichen Sensor, der ein quadratisches Bild (englisch: frame) des fotografierten Gebiets liefert.

Neben den beiden Kameraaugen ist der irdische Späher außerdem mit zwei Spektrometern zur Kartierung der mineralogischen Zusammensetzung von Vesta ausgestattet: Das Gammastrahlen-Neutronen-Spektrometer GRaND soll helfen, die Elemente Sauerstoff, Magnesium, Aluminium, Silizium, Kalzium, Titan und Eisen aufzuspüren. Der Spektrograph VIR untersucht die sichtbare und infrarote elektromagnetische Strahlung, die Vesta ins Weltall reflektiert. VIR wurde von der italienischen Weltraumagentur ASI zur Verfügung gestellt und von dem Unternehmen Galileo Avionica entwickelt und gebaut; GRaND stammt aus den Werkstätten des Los Alamos National Laboratory in New Mexiko (USA).

Dawn heißt auf deutsch „Morgendämmerung“ und gehört zu einer neuen Generation von Raumsonden mit innovativer Technik. Im Rahmen dieses Discovery-Programms hat die Nasa bereits eine Reihe erfolgreicher Missionen gefahren, etwa die Sonden Near (sie landete am 12. Februar 2001 auf dem Asteroiden Eros) oder Deep Impact (die am 4. Juli 2005 einen Impaktor auf den Kern des Kometen Tempel 1 schleuderte). Eine der Besonderheiten von Dawn ist ihr Antrieb, der einen an die Science-Fiction-Serie Raumschiff Enterprise denken lässt.

Denn ihren Schub bezieht die Raumsonde aus einem elektrischen Kraftwerk. Der Treibstofftank enthält 425 Kilogramm Xenon. Die Atome dieses Edelgases werden in eine Kammer gepumpt und dort ionisiert, das heißt, ihnen wird jeweils ein Elektron entrissen; die Energie dafür stammt aus Strom, der über Solarzellen gewonnen wird. Nach dieser „Behandlung“ bleiben positiv geladene Xenon-Ionen zurück. An der Öffnung eines jeden der drei Triebwerke befinden sich zwei Molybdängitter – das eine positiv, das andere negativ geladen. Dieses Ladungsgefälle bewirkt elektromagnetische Felder und schleudert die Ionen mit einer Geschwindigkeit von 100000 Kilometern pro Stunde in Form eines Strahls in den freien Weltraum.

Auf diese Weise entsteht ein Rückstoß, der jedoch nur ein Zehntausendstel des Schubs eines klassischen Raketentriebwerks erreicht. Gegen die Hand gerichtet, würde er sich wie der Druck eines Blatt Papiers anfühlen. Doch steter Tropfen höhlt den Stein: Die Techniker der Nasa wollen Dawns Ionentriebwerk insgesamt rund 50000 Stunden feuern lassen. Das entspricht mehr als fünf Jahren Dauerbetrieb und ist Leistungsrekord für eine Raumsonde.

Am 16. Juli fingen Vestas Schwerkraftfesseln Dawn ein. Dabei war die Sonde noch etwa 16000 Kilometer von dem Planetoiden entfernt. Jetzt wird sie ihn einige Monate lang begleiten und dabei Schritt für Schritt in immer tiefere Umlaufbahnen vordringen. Am Ende ihres Besuchs – voraussichtlich im Juli 2012 – werden das Vehikel weniger als 200 Kilometer von der Oberfläche des Kleinplaneten trennen. Dann wird Dawn hoffentlich viele neue Erkenntnisse über die Geschichte des Sonnensystems gesammelt haben, denn der Besuch bei Vesta gleicht einer Reise in die Vergangenheit. Asteroiden gelten heute als Relikte aus der Zeit, als sich die Sonne und ihre Planeten vor 4,6 Milliarden Jahren aus der Urwolke schälten.

Nach der Erkundungstour bei Vesta ist der Trip nicht zu Ende: Noch einmal geht es auf eine 1,6 Milliarden Kilometer lange Strecke, hin zu dem knapp tausend Kilometer großen, kugelförmigen Zwergplaneten Ceres. Dort soll Dawn schon im Februar 2015 ankommen. Eine günstige Konstellation der Himmelskörper ermöglicht diese relativ kurze Flugzeit. Nach der Ankunft soll sich Dawn in den folgenden Monaten der Ceres-Oberfläche bis auf etwa 700 Kilometer nähern.

Versierte Sterngucker können sich die beiden Ziele in den nächsten Wochen selbst ansehen: Ceres bewegt sich im Sternbild Walfisch und steht Ende August am Morgenhimmel exakt im Süden. Vesta kommt am 5. August in Opposition, geht also bei Sonnenuntergang auf und bei Sonnenaufgang unter; Ende August könnte sie sogar mit bloßem Auge zu sehen sein, während Ceres ein Objekt für den Feldstecher bleibt. Doch selbst im größten Fernrohr erscheinen die beiden Himmelskörper als sternförmige Punkte.

Die Mission Dawn wird vom Jet Propulsion Laboratory (JPL) der amerikanischen
Weltraumbehörde Nasa geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und von Nasa/JPL unterstützt.
Ansprechpartner
Dr. Birgit Krummheuer
Press and Public Relations
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
Fax: +49 5556 979-240
E-Mail: presseinfo@mps.mpg.de

Helmut Hornung | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4379903/dawn_antrieb

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie