Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker wollen Übergang zur Quantenwelt sichtbar machen

22.10.2013
Neue Einblicke in die Welt der Quanten soll ein Mikro-Labor eröffnen, das der Theoretische Physiker Frank Wilhelm-Mauch und sein Team von der Universität des Saarlandes als mathematisches Modell entwickelt haben.

100 Lichtquanten samt ihren komplexen quantenmechanischen Beziehungen („Verschränkungen“) können in dem Testsystem gleichzeitig untersucht werden, so viele wie nie zuvor. Die Forscher erwarten neue Erkenntnisse etwa für den Quantencomputer.


Schematische Darstellung des „Metamaterials“: Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Grafik: Arbeitsgruppe Frank Wilhelm-Mauch

Als weltweit erste Gruppe nutzen sie für ihr Verfahren ein Metamaterial, ein maßgefertigtes Gitter aus Nanostrukturen, das Licht stärker bricht als jeder natürliche Stoff. Ihre Ergebnisse veröffentlichen sie in den Physical Review Letters.

Ein Auto ist zur selben Zeit an nur einem Ort. Dieser Ort ist genau bestimmbar wie auch die Geschwindigkeit des Wagens: In der Welt, in der wir leben, gelten die uns bekannten Naturgesetze. Aber diese Gesetze – und damit auch die klassische Physik – stoßen in Dimensionen kleiner als ein Atom an eine Grenze. Ab diesem Punkt ist in der Mikrowelt alles anders: Quantenteilchen, auch Photonen oder Lichtquanten genannt, sind gleichzeitig an mehreren Orten und dazu noch verschieden schnell – es gelten die Gesetze der Quantenwelt. Über diesen Übergang der „zwei Welten“, an dem Naturgesetze enden und Quantengesetze beginnen, ist heute wenig bekannt. „Die Welt der Quanten lässt sich nicht einfach auf genau vermessbare, große Systeme übertragen“, erklärt Frank Wilhelm-Mauch.

Der Theoretische Physiker und seine Arbeitsgruppe haben mit mathematischen Methoden ein Mikro-Labor entwickelt, das einem Stück gewöhnlichem Antennenkabel ähnelt, das es aber möglich machen soll, den Übergang der beiden Welten in einem steuerbaren System zu untersuchen. „Wir erwarten, dass die Quanteneigenschaften bei einer bestimmten Größe schwächer werden oder sogar ganz verloren gehen. Um diesen Übergang gezielt zu erforschen und den Quantenzustand gezielt zu untersuchen, stellen wir mit unserem neuartigen Konzept ein sehr großes Testsystem von 100 unterscheidbaren Photonen als Grundlage für Messungen bereit, und zwar ohne, dass ein Photon dabei verloren geht. Das Kabel wird aus supraleitendem Material bestehen und die Untersuchungen erfolgen bei tiefen Temperaturen“, erklärt Professor Wilhelm-Mauch.

Bislang sind solche Unterfangen verlustreich: Von hundert Photonen kann mit den heute existierenden Methoden im Endeffekt nur eines untersucht werden. Da die Lichtquanten gleichzeitig mehrere Zustände einnehmen, ist eine Messung zudem, sobald sie erfolgt, nur ein winziger Ausschnitt aus einem höchst komplexen Vorgang: Der Messwert beschreibt immer nur einen einzigen der Zustände. „Aus diesem Grund machen wir unser Testsystem mit 100 Photonen so groß wie heute möglich, um diese hochverschränkten, also miteinander verwobenen Vorgänge zu untersuchen. Die Messwerte erlauben damit eine erheblich genauere Sicht auf die Abläufe“, erklärt er.

Die Forscher überlisten hierzu die Gesetze der klassischen Optik. Sie kombinieren die Quantenoptik mit so genannten „linkshändigen Medien“ und leiten hierfür Lichtteilchen durch ein „Metamaterial“. Solche Gitter aus Nanostrukturen, an denen schon seit längerem in der klassischen Optik geforscht wird, haben eine besondere Fähigkeit: Licht, das auf sie fällt, wird stärker gebrochen als in der Natur, also wie zum Beispiel von Wasser. Die Winkel der Lichtbrechung können beeinflusst werden. Auch die Saarbrücker Physiker haben mathematisch ein solches Gitter für Photonen der Mikrowellenstrahlung maßgeschneidert, das erstmals gut genug für quantenoptische Untersuchungen ist. Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Vor allem den Übergang zur Quantenwelt zu untersuchen, ist für die Forscher interessant. Das Wissen über diese Schnittstelle kann das Wissen über unsere Welt genauer machen, denn auch – oder gerade – hier haben die Quanten ihre Effekte. So könnten sich neue Möglichkeiten etwa für den Quantencomputer eröffnen: „Wenn wir herausfinden, wie groß ein Quantensystem maximal sein kann, damit es noch quantenmechanischen Gesetzen folgt, könnten wir die Speicherkapazität so groß wie möglich machen“, erklärt Wilhelm-Mauch. Der Theoretische Physiker forscht im internationalen Forschungsnetzwerk „Scaleqit“ am Quantencomputer und hat für diesen bereits einen hocheffizienten Mikrowellen-Detektor entwickelt, der Photonen mit hundertprozentiger Effizienz nachweisen kann. Derzeit arbeiten Wissenschaftler der Universitäten Karlsruhe und Syracuse (USA) am Prototyp des Labors.

Originalpublikation: Daniel Egger, Frank-Wilhelm-Mauch: „Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines“
Phys. Rev. Lett. 111, 163601 (2013);
doi: 10.1103/PhysRevLett.111.163601
http://prl.aps.org/abstract/PRL/v111/i16/e163601
Kontakt: Prof. Dr. Frank Wilhelm-Mauch:
Tel: 0681/302 -2402, -3960, E-Mail: fwm@lusi.uni-sb.de

Claudia Ehrlich | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie