Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker wollen Übergang zur Quantenwelt sichtbar machen

22.10.2013
Neue Einblicke in die Welt der Quanten soll ein Mikro-Labor eröffnen, das der Theoretische Physiker Frank Wilhelm-Mauch und sein Team von der Universität des Saarlandes als mathematisches Modell entwickelt haben.

100 Lichtquanten samt ihren komplexen quantenmechanischen Beziehungen („Verschränkungen“) können in dem Testsystem gleichzeitig untersucht werden, so viele wie nie zuvor. Die Forscher erwarten neue Erkenntnisse etwa für den Quantencomputer.


Schematische Darstellung des „Metamaterials“: Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Grafik: Arbeitsgruppe Frank Wilhelm-Mauch

Als weltweit erste Gruppe nutzen sie für ihr Verfahren ein Metamaterial, ein maßgefertigtes Gitter aus Nanostrukturen, das Licht stärker bricht als jeder natürliche Stoff. Ihre Ergebnisse veröffentlichen sie in den Physical Review Letters.

Ein Auto ist zur selben Zeit an nur einem Ort. Dieser Ort ist genau bestimmbar wie auch die Geschwindigkeit des Wagens: In der Welt, in der wir leben, gelten die uns bekannten Naturgesetze. Aber diese Gesetze – und damit auch die klassische Physik – stoßen in Dimensionen kleiner als ein Atom an eine Grenze. Ab diesem Punkt ist in der Mikrowelt alles anders: Quantenteilchen, auch Photonen oder Lichtquanten genannt, sind gleichzeitig an mehreren Orten und dazu noch verschieden schnell – es gelten die Gesetze der Quantenwelt. Über diesen Übergang der „zwei Welten“, an dem Naturgesetze enden und Quantengesetze beginnen, ist heute wenig bekannt. „Die Welt der Quanten lässt sich nicht einfach auf genau vermessbare, große Systeme übertragen“, erklärt Frank Wilhelm-Mauch.

Der Theoretische Physiker und seine Arbeitsgruppe haben mit mathematischen Methoden ein Mikro-Labor entwickelt, das einem Stück gewöhnlichem Antennenkabel ähnelt, das es aber möglich machen soll, den Übergang der beiden Welten in einem steuerbaren System zu untersuchen. „Wir erwarten, dass die Quanteneigenschaften bei einer bestimmten Größe schwächer werden oder sogar ganz verloren gehen. Um diesen Übergang gezielt zu erforschen und den Quantenzustand gezielt zu untersuchen, stellen wir mit unserem neuartigen Konzept ein sehr großes Testsystem von 100 unterscheidbaren Photonen als Grundlage für Messungen bereit, und zwar ohne, dass ein Photon dabei verloren geht. Das Kabel wird aus supraleitendem Material bestehen und die Untersuchungen erfolgen bei tiefen Temperaturen“, erklärt Professor Wilhelm-Mauch.

Bislang sind solche Unterfangen verlustreich: Von hundert Photonen kann mit den heute existierenden Methoden im Endeffekt nur eines untersucht werden. Da die Lichtquanten gleichzeitig mehrere Zustände einnehmen, ist eine Messung zudem, sobald sie erfolgt, nur ein winziger Ausschnitt aus einem höchst komplexen Vorgang: Der Messwert beschreibt immer nur einen einzigen der Zustände. „Aus diesem Grund machen wir unser Testsystem mit 100 Photonen so groß wie heute möglich, um diese hochverschränkten, also miteinander verwobenen Vorgänge zu untersuchen. Die Messwerte erlauben damit eine erheblich genauere Sicht auf die Abläufe“, erklärt er.

Die Forscher überlisten hierzu die Gesetze der klassischen Optik. Sie kombinieren die Quantenoptik mit so genannten „linkshändigen Medien“ und leiten hierfür Lichtteilchen durch ein „Metamaterial“. Solche Gitter aus Nanostrukturen, an denen schon seit längerem in der klassischen Optik geforscht wird, haben eine besondere Fähigkeit: Licht, das auf sie fällt, wird stärker gebrochen als in der Natur, also wie zum Beispiel von Wasser. Die Winkel der Lichtbrechung können beeinflusst werden. Auch die Saarbrücker Physiker haben mathematisch ein solches Gitter für Photonen der Mikrowellenstrahlung maßgeschneidert, das erstmals gut genug für quantenoptische Untersuchungen ist. Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Vor allem den Übergang zur Quantenwelt zu untersuchen, ist für die Forscher interessant. Das Wissen über diese Schnittstelle kann das Wissen über unsere Welt genauer machen, denn auch – oder gerade – hier haben die Quanten ihre Effekte. So könnten sich neue Möglichkeiten etwa für den Quantencomputer eröffnen: „Wenn wir herausfinden, wie groß ein Quantensystem maximal sein kann, damit es noch quantenmechanischen Gesetzen folgt, könnten wir die Speicherkapazität so groß wie möglich machen“, erklärt Wilhelm-Mauch. Der Theoretische Physiker forscht im internationalen Forschungsnetzwerk „Scaleqit“ am Quantencomputer und hat für diesen bereits einen hocheffizienten Mikrowellen-Detektor entwickelt, der Photonen mit hundertprozentiger Effizienz nachweisen kann. Derzeit arbeiten Wissenschaftler der Universitäten Karlsruhe und Syracuse (USA) am Prototyp des Labors.

Originalpublikation: Daniel Egger, Frank-Wilhelm-Mauch: „Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines“
Phys. Rev. Lett. 111, 163601 (2013);
doi: 10.1103/PhysRevLett.111.163601
http://prl.aps.org/abstract/PRL/v111/i16/e163601
Kontakt: Prof. Dr. Frank Wilhelm-Mauch:
Tel: 0681/302 -2402, -3960, E-Mail: fwm@lusi.uni-sb.de

Claudia Ehrlich | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise