Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker wollen Übergang zur Quantenwelt sichtbar machen

22.10.2013
Neue Einblicke in die Welt der Quanten soll ein Mikro-Labor eröffnen, das der Theoretische Physiker Frank Wilhelm-Mauch und sein Team von der Universität des Saarlandes als mathematisches Modell entwickelt haben.

100 Lichtquanten samt ihren komplexen quantenmechanischen Beziehungen („Verschränkungen“) können in dem Testsystem gleichzeitig untersucht werden, so viele wie nie zuvor. Die Forscher erwarten neue Erkenntnisse etwa für den Quantencomputer.


Schematische Darstellung des „Metamaterials“: Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Grafik: Arbeitsgruppe Frank Wilhelm-Mauch

Als weltweit erste Gruppe nutzen sie für ihr Verfahren ein Metamaterial, ein maßgefertigtes Gitter aus Nanostrukturen, das Licht stärker bricht als jeder natürliche Stoff. Ihre Ergebnisse veröffentlichen sie in den Physical Review Letters.

Ein Auto ist zur selben Zeit an nur einem Ort. Dieser Ort ist genau bestimmbar wie auch die Geschwindigkeit des Wagens: In der Welt, in der wir leben, gelten die uns bekannten Naturgesetze. Aber diese Gesetze – und damit auch die klassische Physik – stoßen in Dimensionen kleiner als ein Atom an eine Grenze. Ab diesem Punkt ist in der Mikrowelt alles anders: Quantenteilchen, auch Photonen oder Lichtquanten genannt, sind gleichzeitig an mehreren Orten und dazu noch verschieden schnell – es gelten die Gesetze der Quantenwelt. Über diesen Übergang der „zwei Welten“, an dem Naturgesetze enden und Quantengesetze beginnen, ist heute wenig bekannt. „Die Welt der Quanten lässt sich nicht einfach auf genau vermessbare, große Systeme übertragen“, erklärt Frank Wilhelm-Mauch.

Der Theoretische Physiker und seine Arbeitsgruppe haben mit mathematischen Methoden ein Mikro-Labor entwickelt, das einem Stück gewöhnlichem Antennenkabel ähnelt, das es aber möglich machen soll, den Übergang der beiden Welten in einem steuerbaren System zu untersuchen. „Wir erwarten, dass die Quanteneigenschaften bei einer bestimmten Größe schwächer werden oder sogar ganz verloren gehen. Um diesen Übergang gezielt zu erforschen und den Quantenzustand gezielt zu untersuchen, stellen wir mit unserem neuartigen Konzept ein sehr großes Testsystem von 100 unterscheidbaren Photonen als Grundlage für Messungen bereit, und zwar ohne, dass ein Photon dabei verloren geht. Das Kabel wird aus supraleitendem Material bestehen und die Untersuchungen erfolgen bei tiefen Temperaturen“, erklärt Professor Wilhelm-Mauch.

Bislang sind solche Unterfangen verlustreich: Von hundert Photonen kann mit den heute existierenden Methoden im Endeffekt nur eines untersucht werden. Da die Lichtquanten gleichzeitig mehrere Zustände einnehmen, ist eine Messung zudem, sobald sie erfolgt, nur ein winziger Ausschnitt aus einem höchst komplexen Vorgang: Der Messwert beschreibt immer nur einen einzigen der Zustände. „Aus diesem Grund machen wir unser Testsystem mit 100 Photonen so groß wie heute möglich, um diese hochverschränkten, also miteinander verwobenen Vorgänge zu untersuchen. Die Messwerte erlauben damit eine erheblich genauere Sicht auf die Abläufe“, erklärt er.

Die Forscher überlisten hierzu die Gesetze der klassischen Optik. Sie kombinieren die Quantenoptik mit so genannten „linkshändigen Medien“ und leiten hierfür Lichtteilchen durch ein „Metamaterial“. Solche Gitter aus Nanostrukturen, an denen schon seit längerem in der klassischen Optik geforscht wird, haben eine besondere Fähigkeit: Licht, das auf sie fällt, wird stärker gebrochen als in der Natur, also wie zum Beispiel von Wasser. Die Winkel der Lichtbrechung können beeinflusst werden. Auch die Saarbrücker Physiker haben mathematisch ein solches Gitter für Photonen der Mikrowellenstrahlung maßgeschneidert, das erstmals gut genug für quantenoptische Untersuchungen ist. Es besteht aus einer Reihenschaltung winziger Kondensatoren und Spulen. Mit diesem Wellenleiter können sehr viele Photonen auf kleinsten Raum gepackt und im Kabel geführt werden. Dies wollen die Forscher für quantenoptische Messungen nutzen.

Vor allem den Übergang zur Quantenwelt zu untersuchen, ist für die Forscher interessant. Das Wissen über diese Schnittstelle kann das Wissen über unsere Welt genauer machen, denn auch – oder gerade – hier haben die Quanten ihre Effekte. So könnten sich neue Möglichkeiten etwa für den Quantencomputer eröffnen: „Wenn wir herausfinden, wie groß ein Quantensystem maximal sein kann, damit es noch quantenmechanischen Gesetzen folgt, könnten wir die Speicherkapazität so groß wie möglich machen“, erklärt Wilhelm-Mauch. Der Theoretische Physiker forscht im internationalen Forschungsnetzwerk „Scaleqit“ am Quantencomputer und hat für diesen bereits einen hocheffizienten Mikrowellen-Detektor entwickelt, der Photonen mit hundertprozentiger Effizienz nachweisen kann. Derzeit arbeiten Wissenschaftler der Universitäten Karlsruhe und Syracuse (USA) am Prototyp des Labors.

Originalpublikation: Daniel Egger, Frank-Wilhelm-Mauch: „Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines“
Phys. Rev. Lett. 111, 163601 (2013);
doi: 10.1103/PhysRevLett.111.163601
http://prl.aps.org/abstract/PRL/v111/i16/e163601
Kontakt: Prof. Dr. Frank Wilhelm-Mauch:
Tel: 0681/302 -2402, -3960, E-Mail: fwm@lusi.uni-sb.de

Claudia Ehrlich | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften