Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker wollen supraleitende Folien entwickeln

21.08.2014

Eine biegsame Kunststoff-Folie, in die ein Geflecht aus Hochtemperatur-Supraleitern eingebettet ist – ein solches Verbundmaterial wollen Experimentalphysiker der Universität des Saarlandes im Rahmen ihres neuen Projekts „Supraleitende Folien“ entwickeln. Falls dies gelingt, wäre das der Beginn einer neuen Klasse von supraleitenden Materialien.

Das unter Leitung von Dr. Michael Koblischka durchgeführte Projekt der Arbeitsgruppe „Nanostrukturforschung und Nanotechnologie“ von Professor Uwe Hartmann wird von der VolkswagenStiftung in der Initiative „Experiment!“ 18 Monate lang mit insgesamt 100.000 Euro gefördert. Die Initiative unterstützt grundlegend neue Ideen mit ungewissem Ausgang.

Das Projekt ist eines von 19 Vorhaben, die in der diesjährigen Ausschreibungsrunde aus insgesamt 630 Anträgen ausgewählt wurden.

Supraleiter, die bei Abkühlung den elektrischen Widerstand verlieren und verlustfrei Strom leiten können, sind seit rund hundert Jahren bekannt. Allerdings benötigen die klassischen Supraleiter, die aus Metallen bestehen, Temperaturen nahe dem absoluten Nullpunkt (-273 Grad Celsius), was sie für viele Anwendungen wirtschaftlich unattraktiv macht.

In den 1980er Jahren wurden die ersten Hochtemperatur-Supraleiter entdeckt, die den verlustfreien Transport von Strom schon bei vergleichsweise höheren Temperaturen um minus 200 Grad Celsius erlauben. Sie werden mit flüssigem Stickstoff gekühlt, der kostengünstig und leicht verfügbar ist. Da sie aus Keramiken bestehen, sind sie jedoch äußerst starr und spröde und daher nur eingeschränkt technisch einsetzbar.

Um biegsame keramische Supraleiter herzustellen, haben Professor Uwe Hartmann und sein Team an der Saar-Universität erstmals das Verfahren des Elektrospinnens benutzt, das bisher fast nur für Kunststoffe (Polymere) eingesetzt wurde. Dabei werden flüssige Vorläuferverbindungen (Präkursoren) durch eine feine Düse gepresst, die unter elektrischer Spannung steht.

So entstehen hauchdünne Fäden, die mit einem Durchmesser von 100 Nanometern oder weniger tausendmal dünner sind als ein menschliches Haar. Dieses Geflecht feiner Fasern wird während einer Nachbehandlung erhitzt, so dass Supraleiter in der richtigen Zusammensetzung entstehen: Sie bestehen aus Yttrium, Barium, Kupfer und Sauerstoff (abgekürzt: „YBCO“) oder ähnlichen Verbindungen. „Das Geflecht aus Hochtemperatur-Supraleitern ist deutlich ressourcenärmer als die herkömmlichen Keramiken und vor allem sehr biegsam“, erklärt Uwe Hartmann.

In ihrem neuen Projekt „Supraleitende Folien“ wollen die Saarbrücker Forscher nun noch einen Schritt weiter gehen: Das Geflecht aus Nanodrähten soll in eine Kunststofffolie eingebettet werden, die „biegsam und dünn wie eine Frischhaltefolie ist und in jeder Größe hergestellt werden kann“, so Hartmann.

Solche Folien wären eine völlig neue Klasse von supraleitenden Materialien, da sie die Vorteile der Supraleitung – den verlustfreien Energietransport – mit der Flexibilität und dem geringen Gewicht einer Folie verbinden könnten. Einsetzbar wären sie beispielsweise als flexible supraleitende Kabel oder als elektromagnetische Abschirmmaterialien, beispielsweise in der Medizintechnik oder in der Weltraumtechnik. 

Doch noch sind die Forschungen hierzu ganz am Anfang: „Die Herausforderung für uns besteht nun darin, Kunststoffe zu finden, die bei Temperaturen um minus 200 Grad Celsius biegsam sind und nicht mit den Supraleitern reagieren“, erläutert Uwe Hartmann das Ziel des von der Volkswagen-Stiftung prämierten Forschungsprojekts.

Mit der Förderinitiative „Experiment!“ unterstützt die VolkswagenStiftung grundlegend neue Forschungsvorhaben mit hohem Forschungsrisiko, zu denen es bisher kaum Vorarbeiten gibt. Mit der frei verwendbaren Anschubfinanzierung von 100.000 Euro können Forscher während einer Phase von 18 Monaten erste Anhaltspunkte für die Tragfähigkeit ihres Konzeptes gewinnen. Weitere Infos zur Förderinitiative: http://www.volkswagenstiftung.de/foerderung/herausforderung/experiment.html

Kontakt:
Prof. Dr. Uwe Hartmann
Institut für Experimentalphysik
Tel. 0681 302-3798, -3799
E-Mail: u.hartmann@mx.uni-saarland.de

Dr. Michael R. Koblischka
Tel.: 0681 302-4555
E-Mail: m.koblischka@mx.uni-saarland.de, m.koblischka@gmail.com

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-4582) richten.

Gerhild Sieber | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise