Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker untersuchen, wie Materialien mit Nanoporen Flüssigkeiten aufsaugen

16.07.2012
Benetzt man einen Zuckerwürfel mit Kaffee, so wird die Flüssigkeit sofort vom Zucker aufgesogen. Verantwortlich sind Kapillarkräfte, die in den Poren zwischen den Zuckerkristallen auf die Flüssigkeit wirken.

Weitgehend unbekannt ist bisher, wie solche Benetzungsvorgänge in porösen Gläsern ablaufen, die eine ungewöhnliche mikroskopische Struktur haben. Dieser Frage haben sich theoretische Physiker der Universität des Saarlandes um Professor Heiko Rieger zusammen mit Experimentalphysikern von den Universitäten Hamburg und Düsseldorf gewidmet.

In Vycor-Glas fanden sie eine besonders komplexe Struktur der Flüssigkeitsgrenzfläche, die sie anhand eines Porennetzwerk-Modells erklären konnten.

Die Studie wurde nun im renommierten interdisziplinären Journal Proceedings of the National Academy of Science veröffentlicht.

Für die Papierherstellung, die Drucktechnik, die Ölförderung und viele andere Anwendungen ist es wichtig zu verstehen, wie das Aufsaugen von Flüssigkeiten durch poröse Materialien (Imbibition) vor sich geht. Dabei bildet sich meist eine kontinuierliche Flüssigkeitsgrenzfläche zwischen dem benetzten und dem noch nicht-benetzten Teil aus, die für viele poröse Materialien recht gut verstanden wird. Komplizierter scheinen die Benetzungsvorgänge in porösen Gläsern zu sein, insbesondere in Vycor-Glas, das unter anderem in der Medizin, der Pharmaforschung und der Biotechnologie verwendet wird. Es besteht aus einem komplexen Netzwerk aus langgestreckten Poren mit Durchmessern von nur wenigen Nanometern, so dass die Flüssigkeit spontan hunderte von Metern steigen kann, bevor die Schwerkraft die Kapillarkräfte ausgleicht.

Mit Licht- und Neutronenstreuexperimenten nahm das Forscherteam in seiner Studie die Grenzfläche zwischen dem noch trockenen und dem schon benetzten Teil in Vycor-Glas genauer unter die Lupe. Dabei fanden die Wissenschaftler heraus, dass diese so genannte Imbibitionsfront nicht als schmale Linie verläuft, sondern sich schnell sehr stark verbreitert und eine besonders komplexe Struktur ausbildet.

Die Forscher der Saar-Uni haben darauf ein theoretisches Modell entwickelt, welches dieses Phänomen erklärt: Die Flüssigkeit bildet in den langgestreckten Poren von Vycor-Glas konkave Flüssigkeitsgrenzflächen (Menisken) aus, die sich relativ unabhängig voneinander bewegen, obgleich sie alle durch die Flüssigkeit im benetzten Bereich miteinander verbunden sind. An Poren-Verzweigungen mit unterschiedlichen Radien der auslaufenden Poren kann es nun passieren, dass der Meniskus in der dickeren Pore für lange Zeit festgehalten wird. Dies führt zu einer sehr zerfaserten Imbibitionsfront und sogar zu noch leeren Löchern im bereits benetzten Teil, die sich erst zu einem viel späteren Zeitpunkt schließen. Diese löchrigen Teile gehören dann quasi auch noch zur Grenzfläche, die hierdurch extrem breit wird.

Diese Erkenntnisse der Physiker der Saar-Uni um Professor Rieger helfen, die komplexen mikroskopischen Vorgänge in Benetzungsvorgängen in porösen Gläsern besser zu verstehen. Vycor-Glas wird in vielen Bereichen verwendet: Unter anderem ist es ein ideales Material für die Stofftrennung, beispielsweise in der Chromatografie, und als Membran spielt es eine wichtige Rolle bei der Trinkwassergewinnung aus Meerwasser. Auch für die Entwicklung weiterer Nanomaterialien wird das Verständnis der Benetzungsvorgänge zunehmend wichtiger, beispielsweise bei der Herstellung so genannter Hybridfestkörper, bei denen ein weicher Kern von einer harten Hülle umschlossen wird.

Link zur Studie: http://www.pnas.org/content/109/26/10245

Fragen beantwortet:
Professor Heiko Rieger
Theoretische Physik
Tel.: 0681 302-3969 und -2423,
E-Mail: h.rieger@mx.uni-saarland.de

Saar - Uni - Presseteam | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de
http://www.pnas.org/content/109/26/10245

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit