Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker entwickeln Lichtspeicher aus Diamant im Nanometerbereich

14.11.2011
Hundertprozentige Sicherheit gibt es auf dem Gebiet der Quanteninformation, der Signalübertragung mit einzelnen Lichtteilchen.

Nun haben Wissenschaftler um Professor Christoph Becher einen winzigen Lichtspeicher aus Diamant hergestellt, mit dem sie die Erzeugung der benötigten einzelnen Lichtteilchen deutlich steigern konnten. Die Herstellung der extrem kleinen Lichtspeicher – oder Resonatoren – auf der Nanometerskala erfolgte in einer interdisziplinären Kooperation mit Saarbrücker Materialwissenschaftlern und Physikern der Universitäten Augsburg, Freiburg und Kaiserslautern. Über die Entwicklung des Lichtspeichers berichten die Physiker im renommierten Fachmagazin Nature Nanotechnology.


Das Bild zeigt einen Diamantsteg mit photonischer Kristallstruktur. Diese Diamant-Lichtspeicher könnten eine wichtige Komponente für die Quantenkommunikation in der Zukunft werden. Grafik: Kevin Streit

Der verwendete Diamant wird künstlich hergestellt und hat annähernd ideale Eigenschaften, was Reinheit und Transparenz angeht. Zur Fabrikation dieser Lichtkäfige wurde zuerst eine nur 300 Nanometer dünne Membran präpariert. Um den Diamanten für das ausgesandte Licht hochreflektierend zu machen und so die Erzeugungsrate der Lichtteilchen oder Photonen massiv zu erhöhen, wird eine sogenannte photonische Kristallstruktur verwendet. Dazu haben Janine Riedrich-Möller und Laura Kipfstuhl sowie weitere Mitarbeiter der Arbeitsgruppe Quantenoptik um Professor Christoph Becher in die Diamantmembran Löcher mit etwa 80 Nanometern Durchmesser „gebohrt“. Das entspricht etwa einem Tausendstel des Durchmessers eines menschlichen Haares. Durch mehrfache Reflexionen (so genannte Bragg-Reflexionen) an den Lochseitenwänden werden die von Atomen im Diamant ausgesandten Lichtteilchen, also die Informationsträger, wie in einem Käfig in der Mitte der Lochstruktur gespeichert.

Zur Erzeugung der Lichtteilchen selbst verwenden die Wissenschaftler so genannte Farbzentren. Das sind Fremdatome, die fest in das Kristallgitter des Diamanten eingebettet sind. Im Gegensatz zu „echten“ Atomen sind diese Farbzentren deutlich einfacher zu handhaben und erfordern weder aufwändige Vakuumanlagen noch komplizierte Kühlmechanismen um Lichtteilchen mit den gewünschten Eigenschaften auszusenden.

Die Realisierung der Nano-Resonatoren gilt als essentiell für die künftige Nutzung von Farbzentren für die Quanteninformationsübertragung sowie für die Integration mehrerer Komponenten, um Lichtteilchen auf einem einzigen Chip zu erzeugen und zu übertragen. Das grundlegende Konzept der Saarbrücker Physiker bildet die Basis für zukünftige Experimente, in denen die Emission der Photonen kontrolliert, ihre Eigenschaften beeinflusst und Lichtteilchen mehrerer entfernter Farbzentren miteinander in Wechselwirkung gebracht werden sollen. Diese Schritte rücken die Vision einer Quanteninformationstechnologie, basierend auf einem Diamant-Chip, in greifbare Nähe.

Janine Riedrich-Möller, Laura Kipfstuhl, Christian Hepp, Elke Neu, Christoph Pauly, Frank Mücklich, Armin Baur, Michael Wandt, Sandra Wolff, Martin Fischer, Stefan Gsell, Matthias Schreck and Christoph Becher: „One- and two-dimensional photonic crystal microcavities in single crystal diamond”

DOI: 10.1038/NNANO.2011.190

Weitere Informationen erteilen:
Prof. Dr. Christoph Becher
Tel.: (0681)3022466
E-Mail: christoph.becher@physik.uni-saarland.de
Janine Riedrich-Möller, Laura Kipfstuhl
Beide Tel.: (0681) 3023476
E-Mail: riedrich-moeller@mx.uni-saarland.de, l.kipfstuhl@mx.uni-saarland.de

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de
http://dx.doi.org/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics