Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn‘s beim Wachsen knistert

01.08.2013
Wenn Tropfen oder Staubteilchen verschmelzen, gelten oft ähnliche Gesetze wie beim Knistern eines Papiers

Ob bei Öltröpfchen in homogenisierter Milch, Staubteilchen im frühen Sonnensystem oder kleinsten magnetischen Bezirken in Ferromagneten − in vielen Fällen, in denen sich Teile zu einem Ganzen zusammenballen, gilt: Gleich und gleich gesellt sich gern. Oder richtiger: gleichgroß und gleichgroß.


Gleich und gleich gesellt sich gern: In vielen Fällen, in denen sich wie hier beim Wachstum von Tropfen Teile zu einem Ganzen zusammenballen, verschmelzen bevorzugt Teile von ähnlicher Größe.

© MPI für Dynamik und Selbstorganisation


Knüllt man ein Papier zusammen, knistert es: Es tritt eine breite Spanne lauter und leiser Geräusche auf. Rechts: Auch die Kantenlängen des wiederaufgefalteten Papiers folgen der „Knisterverteilung.“

© www.sxc.hu

Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation, der Universität Göttingen und der Azarbayjan Shahid Madani Universität in Iran konnten nun erstmals zeigen, dass es bei solchen Wachstumsprozessen ‚knistert’.

Gemeint ist folgendes: Die einzelnen Teile machen beim Wachstum immer wieder Sprünge, deren Größe zufällig verteilt ist. Diese Zufälligkeit folgt denselben statistischen Gesetzen wie die Schwankungen der Lautstärke, die ein knisterndes Blatt Papier erzeugt. Die neuen Berechnungen helfen unter anderem auch zu verstehen, wie Ferromagnete nach und nach magnetisieren.

Wenn ein Glas vom Tisch fällt und auf dem Boden zerschellt, ist das – aus Sicht des Physikers – nicht ärgerlich, sondern vor allem hochinteressant. Denn die Bruchstücke, die dabei entstehen, sind alle ähnlich groß: Einige große Scherben hebt man mit der Hand auf; bei den etwas kleineren greift man zu Schwammtuch oder Staubsauger. Mikroskopisch kleine Splitter finden sich hingegen so gut wie nie. „In vielen Wachstumsprozessen, die uns in der Natur begegnen, spielt sich dieser Prozess sozusagen rückwärts ab“, erklärt Jan Nagler, Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation. „In erster Linie vereinigen sich Teilsysteme ähnlicher Größe, um ein neues Ganzes zu bilden.“

Doch wie wachsen diese Systeme genau? „Unsere Rechnungen haben gezeigt, dass solche Wachstumsprozesse ,knistern‘ “, fasst Nagler die Ergebnisse der neuen Studie zusammen und schlägt ein Gedankenexperiment vor: „Nehmen wir an, eine Gruppe etwa gleichgroßer Tropfen würde Schritt für Schritt verschmelzen und bei jedem Schritt einen Ton von sich geben: einen leisen Ton, wenn der größte Tropfen, der dabei entsteht, nur wenig wächst; einen lauten Ton, wenn der größte Tropfen einen erheblichen Wachstumsschub macht.“

Eine Art Symphonie des Wachsens

Das Wachsen der Tropfen wird dann von einer Abfolge von Tönen verschiedener Lautstärke begleitet – einer Art Symphonie des Wachsens. „Das Geräusch, das so entsteht, ist ein Knistern. Es ähnelt dem eines Papiers, das in der Hand zerknüllt wird“, so Nagler.

„Jeder von uns hat das – ob aus Wut, Frustration oder zum Zeitvertreib − schon tausendmal gemacht“, so Malte Schröder, Masterstudent an der Universität Göttingen. Doch es lohne sich, dabei einmal ganz genau hinzuhören, fügt er hinzu. Denn beim Zerknüllen treten sowohl laute als auch deutlich leisere Geräusche auf, ähnlich wie bei einem knisternden Feuer. Leises Knistern wird manchmal durch ein sehr lautes Knacken unterbrochen. In beiden Fällen decken die Lautstärken eine breite Spanne ab.

Diese Verteilung beschreibt, was Physiker unter ‚Knistern‘ verstehen – und sie tritt längst nicht nur in Zusammenhang mit Geräuschen und Lautstärken auf. „Faltet man das zerknüllte Blatt wieder auf, so zeigt sich ein komplexes Muster aus langen und kürzeren Faltkanten“, so Nagler. Auch die Verteilung dieser Längen folgt dem „Knistergesetz“. Dasselbe gilt für die Stärke von Erdbeben oder Sonneneruption – und eben auch für die Wachstumssprünge beim Zusammenballen von Teilsystemen.

Die Bandbreite der möglichen, zufällig verteilten Wachstumssprünge nimmt dabei mit der Größe des Gesamtsystems zu. Das macht die Vorhersage in großen Systemen wesentlich schwieriger als in kleinen − und damit auch relevant für Materialien, die aus unzählig vielen Untersystemen bestehen, wie die Atome eines Magneten oder die unzähligen Knoten und Verbindungen in einem Netzwerk.

In Magneten dehnen sich die magnetischen Gebiete sprunghaft aus

In ihren Simulationen spielten die Forscher am Computer verschiedene Wachstumsprozesse durch. Dabei ging es ihnen weder um Öltröpfchen noch um Staubpartikel, sondern um eine allgemeine Beschreibung eines solchen Wachstumsvorgangs. Einzige Bedingung: Die Teilsysteme, die sich verbinden, müssen von ähnlicher Größe sein. „Mathematisch lassen sich solche Wachstumsprozesse gut im Rahmen einer neuen Netzwerktheorie beschreiben“, so Schröder. Das kleinstmögliche Subsystem wird durch einen Knoten symbolisiert. Vereinigen sich zwei Subsysteme, entsteht zwischen den Knoten eine Verbindungslinie – und so nach und nach ein Netzwerk.

In einem zweiten Schritt wandten sich die Forscher einem ganz konkreten System zu: ferromagnetischen Stoffen wie etwa Eisen, Nickel und Kobalt. Berührt man diese Stoffe mit einem Magneten, werden sie auch magnetisch. Im Inneren dieser Stoffe finden sich mikroskopische Gebiete, so genannte Weiß’sche Bezirke, die durch den Einfluss von außen nach und nach magnetisiert werden. Auf diese Weise entstehen immer größere zusammenhängende magnetische Gebiete und die Gesamtmagnetisierung steigt deshalb sprunghaft an.

„Da die Weiß’schen Bezirke alle von ähnlicher Größe sind, trifft unser Modell auch hier gut zu“, so Nagler. „Das sprunghafte Ansteigen der Magnetisierung und vor allem die Verteilung dieser Sprünge lässt sich mit unseren Rechnungen gut reproduzieren.“

In einem nächsten Schritt wollen die Forscher nun weitere Systeme identifizieren, welche die nötigen Voraussetzungen für knisterndes Wachstum mitbringen. Denkbar ist vieles – von Öltröpchen auf einer langsam verdampfenden Wasseroberfläche bis hin zu Fusionen etwa gleich großer Unternehmen in der Ökonomie.

Ansprechpartner

Dr. Jan Nagler
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-418
E-Mail: jan@­nld.ds.mpg
Dr. Birgit Krummheuer
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668
Fax: +49 551 5176-702
E-Mail: presse@­ds.mpg.de
Originalpublikation
Malte Schröder, S.H. Ebrahimnazhad Rahbari und Jan Nagler
Crackling Noise in Fractional Percolation
Nature Communications, 26. Juli 2013; doi:10.1038/ncomms3222

Dr. Jan Nagler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7484067/tropfen_wachstum_knistern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics