Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rydberg-Exzitonen – die größten künstlichen Wasserstoffatome

23.10.2014

Physikern der TU Dortmund um die Professoren Dietmar Fröhlich und Manfred Bayer und der Universität Rostock um die Professoren Heinrich Stolz und Stefan Scheel ist es erstmals gelungen, neuartige Materiezustände, sogenannte Rydberg-Exzitonen, zu beobachten, wie sie in einem in der jüngsten Ausgabe des renommierten Fachjournals „Nature“ veröffentlichten Beitrag berichten. Die Dortmunder und Rostocker Physiker sind sich sicher, ein völlig neues Arbeitsgebiet aufgetan zu haben.

Physikern der TU Dortmund um die Professoren Dietmar Fröhlich und Manfred Bayer und der Universität Rostock um die Professoren Heinrich Stolz und Stefan Scheel ist es erstmals gelungen, neuartige Materiezustände, sogenannte Rydberg-Exzitonen, zu beobachten, wie sie in einem in der jüngsten Ausgabe des renommierten Fachjournals „Nature“ veröffentlichten Beitrag berichten. Die Dortmunder und Rostocker Physiker sind sich sicher, ein völlig neues Arbeitsgebiet aufgetan zu haben.


Die Professoren Heinrich Stolz (li) und Stefan Scheel

Halbleiter sind aus unserem Alltag nicht mehr wegzudenken. Nicht nur, dass sie die Basis für alle Komponenten der Mikro- und Nanoelektronik und damit für Computer, Mobiltelefone usw. bilden, auch für die Erzeugung von Licht werden Halbleiter immer bedeutender.

Von immenser Aktualität ist dabei die Entwicklung von Leuchtdioden – hier werden bahnbrechende Arbeiten in diesem Jahr mit dem Nobelpreis für Physik geehrt. Solche Leuchtdioden finden immer weitere Verbreitung und könnten bald endgültig die Glühlampe mit einem Potential für große Energieeinsparung ersetzen.

Die Lichterzeugung in Halbleitern kann man sich dabei so vorstellen, dass ein negativ geladenes Teilchen, ein Elektron, und ein positiv geladenes Teilchen - im Fachjargon Loch genannt – zusammenfinden und sich dabei in Energie in Form von Licht bestimmter Farbe umwandeln. Vor dieser Umwandlung können Elektron und Loch einen gebundenen Zustand mit einer Energie unterhalb der von ungebundenen freien Elektronen und Löcher bilden.

Ursache dafür ist, dass Elektron und Loch aufgrund ihrer entgegengesetzten Ladungen anziehende Kräfte aufeinander ausüben. Dieser gebundene Elektron-Loch-Komplex wird Exziton genannt und hat große Ähnlichkeit mit einem Wasserstoffatom, das aus einem positiv geladenen Proton und einem Elektron besteht. Ein solches System ist so klein, dass es quantenmechanisch beschrieben werden muss.

Aus dieser Beschreibung ergibt sich, dass das Wasserstoffatom nicht jede beliebige Energie annehmen darf, sondern nur bestimmte diskrete Werte, bekannt als so genannte Rydberg-Serie. Eine qualitativ identische Serie an erlaubten Energien findet man für das Exziton.

Allerdings gibt es auch bedeutende Unterschiede. Während sich beim Wasserstoffatom die beiden Teilchen ungestört im Vakuum bewegen, befindet sich das Exziton im Halbleiter in einem Kristallgitter, aufgebaut aus periodisch angeordneten Atomen, die ihrerseits viele Elektronen aufweisen.

Trotz dieses Hintergrunds an Ladungen schafft es das Exziton, sich ungestört durch den Kristall zu bewegen, ohne durch Stöße mit anderen Ladungen beeinträchtigt zu werden. Allerdings ist die Bindungsstärke von Elektron und Loch im Vergleich zum Wasserstoffatom drastisch reduziert.

Dies äußert sich in unterschiedlichen räumlichen Ausdehnungen. Während das Wasserstoffatom eine Ausdehnung von nur 0,05 Milliardstel Metern im Grundzustand aufweist, haben Exzitonen eine um typischerweise einen Faktor 10 bis 100 größere Ausdehnung, abhängig vom Halbleitermaterial.

Während der letzten Jahre haben Atome mit einem Elektron, das in einen sehr hohen gebundenen Zustand angeregt wurde, großes Interesse erfahren. Diese so genannten Rydberg-Atome können Abmessungen bis zu einem Millionstel Meter aufweisen, also mehr als tausend-mal im Vergleich zum Grundzustand anwachsen. Aber nicht nur ihre Größe nimmt drastisch zu, auch ihre gegenseitige Wechselwirkungsstärke steigt dramatisch um viele Größenordnungen an, je höher das Elektron angeregt wird.

Einer Kollaboration von Physikern der TU Dortmund um die Professoren Dietmar Fröhlich und Manfred Bayer und der Universität Rostock um die Professoren Heinrich Stolz und Stefan Scheel ist es nun gelungen, für Exzitonen Zustände zu beobachten, die denen von Rydberg-Atomen äquivalent sind, wie sie in der jüngsten Ausgabe des Fachjournals Nature berichten( T. Kazimierczuk, et al., Giant Rydberg excitons in the copper oxide Cu2O, Nature 514, 343 (2014)). Der Kristall, der dafür verwendet wurde, heißt Kupferoxydul, ein natürlich vorkommendes Mineral.

Im höchsten beobachtbaren Zustand besitzen die Exzitonen eine Ausdehnung von 2 Millionstel Metern, die im Vergleich zu der Ausdehnung des Grundzustands von weniger als einem milliardstel Meter also mehr als tausendfach größer ist. Trotzdem bleibt das Exziton stabil, obwohl die beteiligten Ladungen sich über einige Trillionen von Atomen hinwegbewegen. Auch die gigantische Wechselwirkung der Exzitonen konnte beobachtet werden. So verhindert ein einziges solches Rydberg-Exziton die Erzeugung eines weiteren Exzitons in seiner Umgebung – ein Effekt, der als Rydberg-Blockade bezeichnet wird.

Der Fortschritt in der Halbleitertechnologie während der letzten Jahrzehnte hat darauf beruht, hochreine künstliche Kristalle mit atomarer Präzision herzustellen. Eine Besonderheit der hier vorgestellten Untersuchungen ist, dass die Resultate nicht an künstlichen Kristallen gewonnen wurden, sondern überraschenderweise an natürlichen Kristallen, die vermutlich seit Millionen Jahren in der Erde lagerten, bevor sie aus der Tsumeb-Mine in Namibia gefördert wurden. Diese Mine ist für Mineralien sehr hoher Güte bekannt – dennoch überrascht die extrem hohe Reinheit dieser Kristalle.

Dass wasserstoffähnliche Rydberg-Exzitonen nun beobachtet wurden, eröffnet ganz neue Möglichkeiten, die mit Atomen so leicht nicht zu realisieren sind. So können an den Kristall Kontakte angebracht werden, mit denen sich elektrische Felder anlegen lassen. Dadurch könnten Rydberg-Exzitonen gezielt durch den Kristall transportiert oder miteinander zum Zusammenstoß gebracht werden. Die ersten Arbeiten in diese Richtung haben bereits begonnen.

Kontakt:
Universität Rostock
Institut für Physik
Prof. Professoren Heinrich Stolz und Stefan Scheel
Tel 0381 / 498 – 6780 oder 6920
Mail: heinrich.stolz@uni-rostock.de;
Mail: stefan.scheel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

nachricht Sind Zeitreisen physikalisch möglich?
26.06.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten