Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rundum-Überwachung von Ceres beginnt

02.03.2015

Am 6. März wird die NASA-Raumsonde Dawn vom Schwerefeld des Zwergplaneten eingefangen

Ist Zwergplanet Ceres, der mit einem Durchmesser von etwa 950 Kilometern größte Bewohner des Asteroidengürtels, ein unveränderlicher, toter Brocken? Oder finden sich auf seiner Oberfläche Anzeichen geologischer Aktivität?


Diese Aufnahmen des Zwergplaneten Ceres wurden am 25. Februar 2015 aus einer Entfernung von 40000 Kilometern gewonnen. Die Auflösung der Kameradaten liegt bei 3,7 Kilometer pro Pixel.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Diesen Fragen wird die NASA-Raumsonde Dawn in den nächsten Monaten nachspüren. Am kommenden Freitag fängt das Schwerefeld des Himmelskörpers das Raumschiff ein und wird es in den folgenden Wochen auf eine Umlaufbahn lenken.

Dies ist der Startschuss für eine mindestens bis Mitte 2016 währende Rundum-Überwachung. Schon jetzt zeigen Fotos aus der letzten Anflugphase eine Vielfalt von Strukturen auf der Oberfläche des kugelförmigen Körpers, etwa helle Flecken, die möglicherweise aus Eis oder Salzen bestehen. Die Aufnahmen entstanden mit dem Kamerasystem an Bord, das unter Leitung des Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde.

Nach etwa zweieinhalbjährigem Flug durch den Asteroidengürtel erreicht die US-amerikanische Raumsonde Dawn am kommenden Freitag ihr Ziel: den Zwergplaneten Ceres, der zwischen den Umlaufbahnen von Mars und Jupiter seine Bahnen um die Sonne zieht. Für Dawn ist dies der zweite Forschungsaufenthalt im Asteroidengürtel. Bereits 2011 nahm das Vehikel den Asteroiden Vesta ins Visier und begleitete ihn mehr als ein Jahr lang. Dawn ist damit das erste Raumschiff in der Geschichte, das nacheinander zwei Körper umkreist.

Die beiden Forschungsobjekte könnten unterschiedlicher kaum sein. So entpuppte sich Vesta als steinig und trocken und ähnelt den inneren Planeten Merkur, Venus, Erde und Mars. Ceres hingegen besteht nach Schätzungen der Forscher zu etwa 25 Prozent aus Wasser. Dawn geht nicht zuletzt der Frage nach, wie sich zwei nach kosmischen Maßstäben so eng benachbarte Körper so verschieden entwickeln konnten.

„Ceres genau zu untersuchen, ist wie eine Art Geschichtsforschung im Weltall“, sagt Jim Green, Direktor der Planetary Science Division der amerikanischen Weltraumbehörde NASA. „Daten, die Dawn zur Erde schickt, könnten uns dabei helfen zu verstehen, wie das Sonnensystem entstand.“

Sowohl Vesta als auch Ceres waren vor 4,5 Milliarden Jahren auf dem besten Wege, sich zu ausgewachsenen Planeten zu entwickeln. Der gleichzeitig entstehende Riesenplanet Jupiter machte ihnen jedoch Konkurrenz: Seine gewaltige Schwerkraft zog alles Material in seiner Umgebung an und wirbelt den Asteroidengürtel bis heute durcheinander; Vesta und Ceres konnten nicht weiter wachsen. „Beide Körper sind somit Fossilien aus der Geburtsstunde des Sonnensystems und werfen Licht auf dessen Entstehung“, sagt die stellvertretende wissenschaftliche Missionsleiterin Carol Raymond vom Jet Propulsion Laboratory (JPL) der NASA.

Bereits seit Januar dieses Jahres liefert Dawn Bilder des Zwergplaneten, die in ihrer Auflösung alle bisherigen Aufnahmen übertreffen. Die Raumsonde ist ausgestattet mit einem wissenschaftlichen Kamerasystem, das unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde und von dort betrieben wird.

Neben Kratern, von denen sich auffällig viele mit einem imposanten Zentralberg schmücken, finden sich auf Ceres‘ Oberfläche vereinzelte helle Flecken. „Strukturen dieser Art kennen wir von keinem anderen Körper im Asteroidengürtel“, sagt Andreas Nathues vom Max-Planck-Institut, wissenschaftlicher Leiter des Kamerateams. Da diese Bereiche mehr als 40 Prozent des einfallenden Lichts reflektieren, vermuten die Forscher, dass sie gefrorenes Wasser oder Salze enthalten.

Anfang vergangenen Jahres hatte das Weltraumteleskop Herschel tatsächlich Wasserdampf in der Umgebung von Ceres entdeckt. Einige Wissenschaftler meinen deshalb, dass der Zwergplanet Wasser aus seinem Innern ins All emittiert. In den nächsten Wochen wollen die Max-Planck-Forscher die Flecken genau beobachten und kontrollieren, ob sie sich möglicherweise im Laufe der Zeit verändern. Dies könnte ein Anzeichen für Aktivität sein.

Die Dawn Mission wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-433

E-Mail: Nathues@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/9003517/dawn-ceres-ueberwachung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie