Rückwärtsstrom wirft neues Licht auf Solarzellen

Mit einer neuartigen Methode gelang die Abbildung der Phänomene mit bisher unerreichter Ortsauflösung. Die Ergebnisse sind in physica status solidi in einem Rapid Research Letter veröffentlicht.

Was Licht absorbiert, kann auch leuchten. Diese Regel ist jedem Studenten der Thermodynamik bekannt. Die Photovoltaik nutzt dieses Prinzip, indem Sonnenlicht absorbiert und in elektrische Energie umgesetzt wird. Genutzt werden dazu sogenannte Solarzellen, an denen eine Photospannung entsteht, so dass der fließende Photostrom Arbeit leisten kann. Diese Betriebsart heißt „Vorwärtsrichtung“.

Wird nun von außen in Vorwärtsrichtung eine Spannung an die Solarzelle angelegt, leuchtet die Solarzelle (im unsichtbaren infraroten Spektralbereich) entsprechend dem Prinzip einer Leuchtdiode. Defekte im Material werden als dunkle Bereiche direkt sichtbar, da an ihnen die Lichtausbeute geringer ist als in den defektfreien Gebieten. In diesen Bereichen kann die Solarzelle unter Beleuchtung auch keinen Photostrom und damit elektrische Leistung erzeugen.

Was passiert bei Rückwärtsrichtung?

Mit dieser Frage setzte sich Dominik Lausch von der Abteilung Halbleiterphysik des Instituts für Experimentelle Physik II, auseinander. Er beschäftigte sich in seiner Diplomarbeit mit Solarzellen, an die er eine Spannung mit entgegen gesetztem Vorzeichen anlegte, also in der sogenannten Rückwärtsrichtung. Auch hier zeigt die Solarzelle charakteristische Leuchterscheinungen, nun aber ausschließlich an den Defekten, insbesondere an den im untersuchten multi-kristallinen Material enthaltenen Korngrenzen.

Es entsteht ein sehr scharfes Bild der Lumineszenz, eine optische Strahlung durch den Übergang von Elektronen zu einem niederenergetischem Ausgangszustand. „Das ermöglicht die Lokalisierung und Identifizierung von Defekten mit vorher nicht bekannter und erreichter räumlicher Auflösung“ sagt Prof. Marius Grundmann, Direktor des Institutes und Leiter der Abteilung Halbleiterphysik, der zugleich gemeinsam mit Dr. Kai Petter von Q-Cells SE Betreuer der Arbeit ist.

Die von den Forschern etablierte Methode heißt ReBEL und steht für „Reverse Bias Electroluminescence“ (Elektrolumineszenz unter Rückwärtsspannung). „Die Forschungsergebnisse befördern die Photovoltaik als nachhaltige und umweltgerechte Technologie“, freut sich Dr. Petter. „Unsere Firma, deren Kerngeschäft die Entwicklung, Herstellung und Vermarktung von leistungsfähigen Solarzellen aus mono- und multikristallinem Silizium ist, wird davon profitieren.“

Wo Licht ist, ist auch Schatten

Neben dieser neuen Analysemethode für komplette Solarzellen ist die Analyse des Rückwärtsbereichs von Solarzellen auch technologisch von herausragender Bedeutung. Im Normalbetrieb arbeitet die Solarzelle im Vorwärtsbetrieb. Fällt jedoch auf ein Solarmodul ein Schatten, z.B. durch herabgefallenes Laub oder Verschattung durch einen Baum, sind die im Schattenbereich befindlichen Solarzellen auf einmal unter Rückwärtsspannung.

Halten sie dies nicht aus, fließt ein großer Strom durch den Effekt des elektrischen „Durchbruchs“. Hier werden typischer Weise Ladungsträger in einem starken elektrischen Feld beschleunigt, das in der Diode innerhalb der Solarzelle entsteht. Das erzeugt neue Ladungsträgerpaare und kann so zu einem hohen, schlimmstenfalls unkontrollierbaren Strom führen, der die Solarzelle und das gesamte Modul zerstören kann.

Die Forscher haben nun herausgefunden, dass dieser Durchbruchstrom nur an bestimmten Defekten und sehr lokal auftritt. Zudem hängt sein prinzipielles Auftreten nicht von der Oberflächenpräparation der Solarzelle mit saurer oder alkalischer Behandlung ab mit der die Lichteinkopplung in die Solarzelle verbessert wird (Antireflektionsschicht).

Die Ergebnisse sind in physica status solidi in einem Rapid Research Letter veröffentlicht. (Dominik Lausch, Kai Petter, Holger von Wenckstern, Marius Grundmann, Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells, Phys. Status Solidi RRL 3, pp. 70-72 (2009))

weitere Informationen:

Prof. Dr. Marius Grundmann
Telefon: 0341 97-32650
E-Mail: grundmann@physik.uni-leipzig.de

Media Contact

Dr. Bärbel Adams idw

Weitere Informationen:

http://www.uni-leipzig.de/~hlp

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer