Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotierende Kugelsternhaufen

09.05.2014

Neue Beobachtungen von Kugelsternhaufen der Milchstraße mit dem VIRUS -W Instrument am McDonald Observatorium zeigen, dass die Zentren dieser Objekte rotieren.

Dieses Ergebnis ist überraschend, da  bisher die Vorstellung bestand, dass aufgrund des hohen Alters bis heute eigentlich jegliche zentrale Rotation hätten verlieren sollen. udem stellten die Astronomen des Max-Planck-Instituts für extraterrestrische Physik und der Universität von Texas in Austin fest, dass die Rotation in enger Beziehung zu der Abflachung der Haufen steht, was darauf hinweist, dass diese Abflachung eine Konsequenz der Rotation ist.


Der Kern des Kugelsternhaufens Messier 13. Dieses Objekt ist nur 25 000 Lichtjahre von uns entfernt und misst etwa 145 Lichtjahre im Durchmesser. Er liegt im Sternbild Herkules und kann manchmal sogar mit einem einfachen Fernglas beobachtet werden.

Credit: ESA / Hubble und NASA


Das VIRUS-W-Instrument (kleines Bild) ist über ein Glasfaserbündel mit dem 2,7m-Teleskop des McDonald-Observatoriums (rechts) verbunden. Die spezielle Konfiguration des Gerätes ermöglicht es den Astronomen, gleichzeitig die Position und die Geschwindigkeit für alle Sterne in einem zweidimensionalen Sichtfeld zu bestimmen.

© MPE

Kugelsternhaufen sind uralte Formationen die in fast allen Galaxien - auch in unserer Milchstraße - aufgefunden werden. Sie bestehen aus bis zu einer Million alter, metallarmer Sterne, die durch ihre Schwerkraft in einem engen Verbund gehalten werden. Aufgrund ihres Alters und ihrer einfachen, sphärischen Form - mit einer starken Konzentration der Sterne in Richtung Zentrum - wurden sie in der Vergangenheit meist als dynamisch und entwicklungsgeschichtlich recht einfache Systeme angesehen. Neuere Beobachtungen führen jedoch immer wieder zu überraschenden Ergebnissen.

"Bei allen Kugelsternhaufen, die wir beobachtet haben, finden wir ein Rotationssignal im Zentrum", sagt Maximilian Fabricius, der leitende Wissenschaftler der Studie am Max-Planck-Institut für extraterrestrische Physik (MPE). "Wir haben das nicht erwartet; ursprünglich wollten wir bei diesen Kugelsternhaufen ihre zentrale Geschwindigkeitsdispersion messen." Die Geschwindigkeitsdispersion ist ein Maß für die zufälligen Bewegungen der Sterne in einem Haufen.

Rotation bedeutet aber, dass der Haufen tatsächlich eine Drehachse besitzt, um die mehr Sterne in einer Richtung kreisen als in der anderen."Theorie und numerische Simulationen von Kugelsternhaufen zeigen, dass jegliche zentrale Rotation auf relativ kurzen Zeitskalen verloren gehen sollte", erklärt Eva Noyola, Co-Autorin der Studie an der Universität von Texas in Austin. "Da diese Kugelsternhaufen aber bereits vor Milliarden von Jahren entstanden, würden wir heute keine Rotationssignatur mehr erwarten. Frühere Messungen zeigten zwar eine gewisse Rotation bei einer Handvoll von Systemen, dabei wurde aber nur die Bewegung der Sterne in den Außenbereichen untersucht."

Die neuen Messungen von fast einem Dutzend von Kugelsternhaufen waren nur mit Hilfe des VIRUS-W-Instruments am Harlan J. Smith 2.7m-Teleskop des McDonald-Observatoriums in Texas möglich. Dieser am MPE entwickelte, so genannte "Integrale Feld-Spektrograph" (IFU) ermöglicht es den Wissenschaftlern, gleichzeitig mehr als 260 Spektren in einem zweidimensionalen Sichtfeld aufzuzeichnen und damit die Bewegung der Sterne mit einer Genauigkeit von einigen Kilometern pro Sekunde zu bestimmen. So lassen sich die Zentren der Haufen schon in einigen wenigen Stunden auf Rotation untersuchen. Ein derartiges Projekt war vor VIRUS-W nicht möglich.

Traditionell bestimmen Astronomen die Geschwindigkeiten von Haufensternen entlang der Sichtlinie jeweils einzeln mit hochauflösenden Spektrographen, mit denen sich die Doppler-Verschiebung der Sterne bestimmen lässt. Dieses Verfahren ist jedoch langwierig und kann aufgrund der großen Zahl von Sternen im Zentrum eines Kugelsternhaufens  nur sehr schwierig angewandt werden.

Daher gab es bisher keine systematischen Untersuchungen zur zentralen Kinematik von Kugelsternhaufen. Auch wenn das VIRUS-W-Instrument ursprünglich entwickelt wurde um die Kinematik naher Galaxien zu untersuchen, ergab sich, dass die Kombination aus dem großen Sichtfeld und der relativ hohen spektralen Auflösung dieses Instruments sehr effizient auch für die Untersuchung von Kugelsternhaufen eingesetzt werden kann.

In der Milchstraße existieren etwa 150 Kugelsternhaufen und für die Studie wählten die Astronomen 27 aus, die vom McDonald-Teleskop (d.h. im Nordhimmel) beobachtet werden können. Von August 2012 bis August 2013 wurden die ersten 11 Kugelsternhaufen beobachtet, und jetzt präsentiert das Team seine überraschenden Ergebnisse: alle Haufen zeigen ein Rotationssignal. Darüber hinaus steht die Rotation in sehr enger Beziehung zu der relativ schwachen Abflachung der Kugelsternhaufen. Dies deutet darauf hin, dass es die Rotation ist, die für die Abflachung dieser Haufen verantwortlich ist und nicht zum Beispiel der Einfluss des Gezeitenfeldes der Milchstraße.

Diese Ergebnisse werfen interessante Fragen in Bezug auf die Entstehungsgeschichte und die Entwicklung der Kugelsternhaufen auf – keines der aktuellen theoretischen Modelle sagt eine derart weit verbreitete Rotation vorher. Allerdings sollte man beachten, dass unter den vorliegenden Messungen keine Kugelsternhaufen sind, bei denen ein sogenannter „Kernkollaps“ stattgefunden hat. Es ist vorstellbar, dass bei diesem Prozess die Rotation verloren geht. Zukünftige Beobachtungen der restlichen Haufen werden bei der Beantwortung weiterer Fragen helfen, wie der nach einer möglichen Korrelation zwischen der Rotation und der Position eines Kugelsternhaufens in unserer Milchstraße.

Kontakt:

Dr. Hannelore Hämmerle

MPE Pressesprecherin

Telefon:+49 (0)89 30000 3980

E-Mail:pr@mpe.mpg.de

Dr. Maximilian Fabricius

Optische und interpretative Astronomie

Telefon:+49 89 3000 3779

E-Mail:mxhf@mpe.mpg.de 

Originalpublikation:

M. H. Fabricius, E. Noyola, S. Rukdee et al., “Central rotation of Milky Way globular clusters”, accepted by ApJ Letters

Link: http://arxiv.org/abs/1405.1722 

MPE Webseite: http://www.mpe.mpg.de/5879328/News_20140507

Dr. Hannelore Hämmerle | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie