Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rote Ampel für Licht - Physiker der TU Darmstadt frieren Lichtbewegung für eine Minute ein

01.08.2013
Etwas anhalten, was größtmögliches Tempo besitzt und eigentlich nie stoppt – dies ist Physikern der TU Darmstadt gelungen.

Die Rede ist von Licht. Dieses bringen Physiker zwar schon seit Jahren in extrem kalten Gasen und speziellen Gasen für kurze Zeiten zum Stehen. Doch nun machten die Darmstädter Forscher einen großen Wurf bei der möglichen Dauer des Einfrierens der Lichtbewegung.

Die Physiker um Thomas Halfmann vom Institut für Angewandte Physik der TU haben Licht für über eine Minute angehalten. Bilder, die durch den Lichtpuls in den Kristall transferiert wurden konnten sie ebenfalls eine Minute lang speichern - eine Millionen Mal länger als bislang möglich.

Den Rekord haben die Forscher erzielt, indem sie verschiedene bekannte Methoden ihres Faches auf raffinierte Weise kombinierten. Praktische Bedeutung könnte das Ergebnis für künftige, mit Licht operierende Datenverarbeitungssysteme erlangen.

Als „Bremsklotz“ diente den Physikern ein glasähnlicher Kristall, der in geringer Konzentration Ionen – elektrisch geladene Atome – des Elementes Praseodym enthält. Zum Versuchsaufbau gehören zudem zwei Laserstrahlen. Der eine ist Teil der „Bremsvorrichtung“, der andere soll gebremst werden. Der erste, „Kontrollstrahl“ genannte Lichtstrahl verändert die optischen Eigenschaften des Kristalls: Die Ionen verändern die Lichtgeschwindigkeit nun sehr stark. Der zweite, zu bremsende Strahl trifft nun auf dieses neue Medium aus Kristall und Laserlicht und wird darin stark verlangsamt. Wenn die Physiker den Kontrollstrahl im gleichen Moment abschalten, in dem sich der andere Strahl im Kristall befindet, kommt der gebremste Strahl darin zum Stillstand.

Genauer gesagt, verwandelt sich das Licht in eine Art im Kristallgitter gefangene Welle. Das lässt sich, stark vereinfacht, wie folgt verstehen: Die Praseodym-Ionen werden von Elektronen umkreist. Diese verhalten sich ähnlich wie aneinandergereihte Magnete: Stößt man einen von ihnen an, pflanzt sich die Bewegung vermittelt durch magnetische Kräfte in der Reihe wie eine Welle fort.

Da Physiker den Magnetismus von Elektronen „Spin“ nennen, ergibt sich beim Einfrieren des Laserstrahls analog eine „Spinwelle“. Diese ist ein Abbild der Lichtwelle des Lasers. Auf diese Weise ist es den Darmstädter Forschern gelungen, auch Bilder, zum Beispiel ein Streifenmuster, aus Laserlicht in dem Kristall zu speichern. Die Information lässt sich wieder auslesen, indem man den Laserstrahl erneut einschaltet.

Dass so bislang nur sehr kurze Speicherzeiten gelangen, liegt daran, dass Umwelteinflüsse die Spinwelle störten, ähnlich wie fahrende Schiffe Wellen in einem See durcheinanderbringen. Die Information über die gespeicherte Lichtwelle geht dabei nach und nach verloren. Lindern lassen sich die Umwelteinflüsse durch Anlegen eines Magnetfeldes sowie durch Hochfrequenz-Pulse. Diese Felder reduzieren sozusagen die Zahl der Schiffe auf dem See.

Wie gut das gelingt, hängt empfindlich von der Stärke und Richtung des Magnetfeldes und der Hochfrequenz-Pulse ab. Dabei gibt es äußerst viele Variationsmöglichkeiten, und die optimale Einstellung lässt sich wegen der Komplexität kaum berechnen. Daher haben die Darmstädter Forscher Computer-Algorithmen verwendet, die während des Experiments voll-automatisch und schnell die besten Lösungen finden. Einer der Algorithmen orientiert sich an der Evolution in der Natur, die möglichst gut an die Umwelt angepasste Organismen hervorbringt. Mittels der Algorithmen konnten die Forscher Laserstrahlen, Magnetfeld und Hochfrequenz-Pulse so einstellen, dass die Spinwellen fast so lange überlebten wie es in dem Kristall überhaupt möglich ist.

Aufbauend auf diesem Erfolg will Halfmanns Team nun Techniken erforschen, um Licht noch deutlich länger – möglicherweise eine Woche lang – zu speichern, sowie eine höhere Breitbandigkeit und Datentransferrate der Informationsspeicherung durch gestopptes Licht zu erreichen.

Ansprechpartner für Presse:
Prof. Dr. Thomas Halfmann
Tel. 06151 16-2379
E-Mail: thomas.halfmann@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Pressefotos zum angehaltenen Licht können Sie im Internet unter
www.tu-darmstadt.de/pressebilder herunterladen.
MI-Nr. 72/2013, Christian Meier

Jörg Feuck | idw
Weitere Informationen:
http://www..tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics