Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rote Ampel für Licht - Physiker der TU Darmstadt frieren Lichtbewegung für eine Minute ein

01.08.2013
Etwas anhalten, was größtmögliches Tempo besitzt und eigentlich nie stoppt – dies ist Physikern der TU Darmstadt gelungen.

Die Rede ist von Licht. Dieses bringen Physiker zwar schon seit Jahren in extrem kalten Gasen und speziellen Gasen für kurze Zeiten zum Stehen. Doch nun machten die Darmstädter Forscher einen großen Wurf bei der möglichen Dauer des Einfrierens der Lichtbewegung.

Die Physiker um Thomas Halfmann vom Institut für Angewandte Physik der TU haben Licht für über eine Minute angehalten. Bilder, die durch den Lichtpuls in den Kristall transferiert wurden konnten sie ebenfalls eine Minute lang speichern - eine Millionen Mal länger als bislang möglich.

Den Rekord haben die Forscher erzielt, indem sie verschiedene bekannte Methoden ihres Faches auf raffinierte Weise kombinierten. Praktische Bedeutung könnte das Ergebnis für künftige, mit Licht operierende Datenverarbeitungssysteme erlangen.

Als „Bremsklotz“ diente den Physikern ein glasähnlicher Kristall, der in geringer Konzentration Ionen – elektrisch geladene Atome – des Elementes Praseodym enthält. Zum Versuchsaufbau gehören zudem zwei Laserstrahlen. Der eine ist Teil der „Bremsvorrichtung“, der andere soll gebremst werden. Der erste, „Kontrollstrahl“ genannte Lichtstrahl verändert die optischen Eigenschaften des Kristalls: Die Ionen verändern die Lichtgeschwindigkeit nun sehr stark. Der zweite, zu bremsende Strahl trifft nun auf dieses neue Medium aus Kristall und Laserlicht und wird darin stark verlangsamt. Wenn die Physiker den Kontrollstrahl im gleichen Moment abschalten, in dem sich der andere Strahl im Kristall befindet, kommt der gebremste Strahl darin zum Stillstand.

Genauer gesagt, verwandelt sich das Licht in eine Art im Kristallgitter gefangene Welle. Das lässt sich, stark vereinfacht, wie folgt verstehen: Die Praseodym-Ionen werden von Elektronen umkreist. Diese verhalten sich ähnlich wie aneinandergereihte Magnete: Stößt man einen von ihnen an, pflanzt sich die Bewegung vermittelt durch magnetische Kräfte in der Reihe wie eine Welle fort.

Da Physiker den Magnetismus von Elektronen „Spin“ nennen, ergibt sich beim Einfrieren des Laserstrahls analog eine „Spinwelle“. Diese ist ein Abbild der Lichtwelle des Lasers. Auf diese Weise ist es den Darmstädter Forschern gelungen, auch Bilder, zum Beispiel ein Streifenmuster, aus Laserlicht in dem Kristall zu speichern. Die Information lässt sich wieder auslesen, indem man den Laserstrahl erneut einschaltet.

Dass so bislang nur sehr kurze Speicherzeiten gelangen, liegt daran, dass Umwelteinflüsse die Spinwelle störten, ähnlich wie fahrende Schiffe Wellen in einem See durcheinanderbringen. Die Information über die gespeicherte Lichtwelle geht dabei nach und nach verloren. Lindern lassen sich die Umwelteinflüsse durch Anlegen eines Magnetfeldes sowie durch Hochfrequenz-Pulse. Diese Felder reduzieren sozusagen die Zahl der Schiffe auf dem See.

Wie gut das gelingt, hängt empfindlich von der Stärke und Richtung des Magnetfeldes und der Hochfrequenz-Pulse ab. Dabei gibt es äußerst viele Variationsmöglichkeiten, und die optimale Einstellung lässt sich wegen der Komplexität kaum berechnen. Daher haben die Darmstädter Forscher Computer-Algorithmen verwendet, die während des Experiments voll-automatisch und schnell die besten Lösungen finden. Einer der Algorithmen orientiert sich an der Evolution in der Natur, die möglichst gut an die Umwelt angepasste Organismen hervorbringt. Mittels der Algorithmen konnten die Forscher Laserstrahlen, Magnetfeld und Hochfrequenz-Pulse so einstellen, dass die Spinwellen fast so lange überlebten wie es in dem Kristall überhaupt möglich ist.

Aufbauend auf diesem Erfolg will Halfmanns Team nun Techniken erforschen, um Licht noch deutlich länger – möglicherweise eine Woche lang – zu speichern, sowie eine höhere Breitbandigkeit und Datentransferrate der Informationsspeicherung durch gestopptes Licht zu erreichen.

Ansprechpartner für Presse:
Prof. Dr. Thomas Halfmann
Tel. 06151 16-2379
E-Mail: thomas.halfmann@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Pressefotos zum angehaltenen Licht können Sie im Internet unter
www.tu-darmstadt.de/pressebilder herunterladen.
MI-Nr. 72/2013, Christian Meier

Jörg Feuck | idw
Weitere Informationen:
http://www..tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften