Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rote Ampel für Licht - Physiker der TU Darmstadt frieren Lichtbewegung für eine Minute ein

01.08.2013
Etwas anhalten, was größtmögliches Tempo besitzt und eigentlich nie stoppt – dies ist Physikern der TU Darmstadt gelungen.

Die Rede ist von Licht. Dieses bringen Physiker zwar schon seit Jahren in extrem kalten Gasen und speziellen Gasen für kurze Zeiten zum Stehen. Doch nun machten die Darmstädter Forscher einen großen Wurf bei der möglichen Dauer des Einfrierens der Lichtbewegung.

Die Physiker um Thomas Halfmann vom Institut für Angewandte Physik der TU haben Licht für über eine Minute angehalten. Bilder, die durch den Lichtpuls in den Kristall transferiert wurden konnten sie ebenfalls eine Minute lang speichern - eine Millionen Mal länger als bislang möglich.

Den Rekord haben die Forscher erzielt, indem sie verschiedene bekannte Methoden ihres Faches auf raffinierte Weise kombinierten. Praktische Bedeutung könnte das Ergebnis für künftige, mit Licht operierende Datenverarbeitungssysteme erlangen.

Als „Bremsklotz“ diente den Physikern ein glasähnlicher Kristall, der in geringer Konzentration Ionen – elektrisch geladene Atome – des Elementes Praseodym enthält. Zum Versuchsaufbau gehören zudem zwei Laserstrahlen. Der eine ist Teil der „Bremsvorrichtung“, der andere soll gebremst werden. Der erste, „Kontrollstrahl“ genannte Lichtstrahl verändert die optischen Eigenschaften des Kristalls: Die Ionen verändern die Lichtgeschwindigkeit nun sehr stark. Der zweite, zu bremsende Strahl trifft nun auf dieses neue Medium aus Kristall und Laserlicht und wird darin stark verlangsamt. Wenn die Physiker den Kontrollstrahl im gleichen Moment abschalten, in dem sich der andere Strahl im Kristall befindet, kommt der gebremste Strahl darin zum Stillstand.

Genauer gesagt, verwandelt sich das Licht in eine Art im Kristallgitter gefangene Welle. Das lässt sich, stark vereinfacht, wie folgt verstehen: Die Praseodym-Ionen werden von Elektronen umkreist. Diese verhalten sich ähnlich wie aneinandergereihte Magnete: Stößt man einen von ihnen an, pflanzt sich die Bewegung vermittelt durch magnetische Kräfte in der Reihe wie eine Welle fort.

Da Physiker den Magnetismus von Elektronen „Spin“ nennen, ergibt sich beim Einfrieren des Laserstrahls analog eine „Spinwelle“. Diese ist ein Abbild der Lichtwelle des Lasers. Auf diese Weise ist es den Darmstädter Forschern gelungen, auch Bilder, zum Beispiel ein Streifenmuster, aus Laserlicht in dem Kristall zu speichern. Die Information lässt sich wieder auslesen, indem man den Laserstrahl erneut einschaltet.

Dass so bislang nur sehr kurze Speicherzeiten gelangen, liegt daran, dass Umwelteinflüsse die Spinwelle störten, ähnlich wie fahrende Schiffe Wellen in einem See durcheinanderbringen. Die Information über die gespeicherte Lichtwelle geht dabei nach und nach verloren. Lindern lassen sich die Umwelteinflüsse durch Anlegen eines Magnetfeldes sowie durch Hochfrequenz-Pulse. Diese Felder reduzieren sozusagen die Zahl der Schiffe auf dem See.

Wie gut das gelingt, hängt empfindlich von der Stärke und Richtung des Magnetfeldes und der Hochfrequenz-Pulse ab. Dabei gibt es äußerst viele Variationsmöglichkeiten, und die optimale Einstellung lässt sich wegen der Komplexität kaum berechnen. Daher haben die Darmstädter Forscher Computer-Algorithmen verwendet, die während des Experiments voll-automatisch und schnell die besten Lösungen finden. Einer der Algorithmen orientiert sich an der Evolution in der Natur, die möglichst gut an die Umwelt angepasste Organismen hervorbringt. Mittels der Algorithmen konnten die Forscher Laserstrahlen, Magnetfeld und Hochfrequenz-Pulse so einstellen, dass die Spinwellen fast so lange überlebten wie es in dem Kristall überhaupt möglich ist.

Aufbauend auf diesem Erfolg will Halfmanns Team nun Techniken erforschen, um Licht noch deutlich länger – möglicherweise eine Woche lang – zu speichern, sowie eine höhere Breitbandigkeit und Datentransferrate der Informationsspeicherung durch gestopptes Licht zu erreichen.

Ansprechpartner für Presse:
Prof. Dr. Thomas Halfmann
Tel. 06151 16-2379
E-Mail: thomas.halfmann@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Pressefotos zum angehaltenen Licht können Sie im Internet unter
www.tu-darmstadt.de/pressebilder herunterladen.
MI-Nr. 72/2013, Christian Meier

Jörg Feuck | idw
Weitere Informationen:
http://www..tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics