Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rosetta-Landung auf Kometenkern: Spurensuche nach dem Ursprung des Lebens

11.11.2014

Bremer Wissenschaftler sind an einem zentralen Experiment der Kometensonde zur Suche nach den molekularen Bausteinen des Lebens auf dem Kometenkern beteiligt.

Vor mehr als zehn Jahren ist die Rosetta-Sonde der europäischen Weltraumorganisation ESA auf Kometenmission geschickt worden. Der Auftrag: Die Entstehungsgeschichte unseres Sonnensystems erforschen und der Frage nach dem Ursprung des Lebens nachgehen. Nun steht der spannendste Moment der Rosetta-Mission unmittelbar bevor.

Am 12. November 2014 wird das Landegerät Philae der Rosetta gegen 17 Uhr auf dem Kometen 67P/Churyumov-Gerasimenko aufsetzen. Wenn alles klappt, wird dies die erste kontrollierte Landung auf dem Kern eines Kometen sein.

Auch Wissenschaftler der Uni Bremen fiebern diesem Moment entgegen. Die Chemiker Professor Wolfram Thiemann (Uni Bremen), Professor Uwe Meierhenrich (früher Uni Bremen, heute Uni Nizza) und Dr. Jan Hendrik Bredehöft (Uni Bremen) sind an dem zentralen Experiment des Landegerätes zur Suche nach den molekularen Bausteinen des Lebens auf dem Kometenkern beteiligt.

Ihr besonderes Interesse richtet sich auf ein Instrument namens COSAC (Cometary Sampling and Composition Experiment) an Bord der Rosetta-Landeeinheit, welches organische Moleküle in dem Kometeneis suchen und untersuchen wird.

Dieses Gerät wurde an der Universität Bremen von den drei Bremer Forschern unter Federführung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen mitentwickelt. Die Bremer Wissenschaftler zeichnen für den Chiralitäts-Teil des Experimentes verantwortlich. Thiemann und Meierhenrich werden zur Rosetta-Landung in Köln am Deutschen Luft- und Raumfahrtzentrum (DLR) zugegen sein. Von hier wird die Landung kontrolliert.

COSAC: ein wissenschaftlich einmaliges Gerät

Das COSAC-Gerät ist wissenschaftlich einmalig, indem neben organischen Molekülen auch deren Chiralität bestimmt werden soll. Diese Eigenschaft der „Händigkeit“ lässt zwischen belebter und unbelebter Materie unterscheiden. Sie dient einem genaueren Verständnis der chemischen Evolution organischer Moleküle, wie sie zum Ursprung des Lebens auf der Erde beigetragen haben.

Die Bremer Wissenschaftler benötigen zur Durchführung ihres Experimentes eine erfolgreiche Landung auf dem Kometenkern sowie eine stabile Verankerung der Landeeinheit auf der Oberfläche des Kometenkerns. Am dritten Kometentag nach der Landung (ein Kometentag dauert 12 Stunden) wird das COSAC Experiment erstmals durchgeführt werden und die Suche nach extraterrestrischen organischen Molekülen und deren Chiralität beginnt.

Was ist Chiralität?

Die Chiralität beschreibt ein von Biomolekülen her gut bekanntes Phänomen. Man weiß, dass sich Biomoleküle aus Bausteinen zusammensetzen, die einheitlich entweder ausschließlich rechts- oder ausschließlich linkshändig sind. Beispielsweise sind Eiweiße (Proteine) ausschließlich aus L-Aminosäuren aufgebaut, wohingegen deren Spiegelbilder, die D-Aminosäuren, in Eiweißen keine Verwendung finden. Auf ähnliche Weise nutzen sowohl die Kohlenhydrate wie auch die DNA ausschließlich D-Zucker und haben keine Verwendung für etwaig vorkommende L-Zucker Einheiten.

Eine zentrale wissenschaftliche Frage ist nun, wie zu Beginn der biologischen Evolution die rechts-/links-Symmetrie gebrochen werden konnte, um die molekularen Bausteine des Lebens einheitlich entweder in rechts- oder in links-Form generieren zu können. Heute sprechen viele Gründe dafür, dass dieser Symmetriebruch nicht erst auf der frühen Erde, sondern bereits im interstellaren Raum stattfand. In solchem Falle sollten diejenigen Moleküle, die wie Aminosäuren oder Zucker das Phänomen der Händigkeit (griechisch: Chiralität) aufweisen, im Kometenmaterial in rechts- oder links-Form in ungleicher Menge nachgewiesen werden.

Weitere Informationen:

Universität Bremen
Fachbereich Biologie / Chemie
Prof. Wolfram Thiemann
Tel.: 0421-218-63211
E-Mail: thiemann@uni-bremen.de

Prof. Uwe Meierhenrich
Universität Nizza
Tel.: +33 (0) 492 076177
E-Mail: uwe.meierhenrich@unice.fr
Twitter: @MhenriU

Dr. Jan Hendrik Bredehöft
Universität Bremen
Fachbereich Biologie / Chemie
Tel.: 0421-218-63201
E-Mail: jhbredehoeft@uni-bremen.de

Eberhard Scholz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften