Röntgenteleskop soll Dunkle Energie im All aufspüren

Er soll dabei sein, wenn 2012 eine Sojus-2-Rakete ein Röntgenteleskop in den Weltraum trägt, um die Natur der Dunklen Energie der Universums zu entschlüsseln: ein vom Max-Planck-Institut für extraterrestrische Physik entwickelter Röntgendetektor.

Seine anspruchsvolle Aufgabe ist es, die schwache Röntgenstrahlung von Himmelskörpern zu erfassen, ohne sich vom sichtbaren und UV-Licht von Milliarden Sternen stören zu lassen. Sehr empfindlich soll der Detektor im Wellenlängenbereich von unter einem bis zu etwa 50 nm sein, während er gleichzeitig im anschließenden Bereich bis zu mehreren hundert Nanometern praktisch blind sein muss.

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es nun weltweit erstmals gelungen, die spektrale Empfindlichkeit in eben diesem Bereich genau zu charakterisieren. Dies war nur möglich, weil der PTB zwei Elektronen-Speicherringe zur Verfügung stehen, die gemeinsam dafür sorgen, dass alle benötigten Spektralbereiche in hoher Qualität zur Verfügung stehen.

Die so genannte Dunkle Energie sorgt dafür, dass sich das Universum beständig und vermutlich mit steigender Geschwindigkeit ausdehnt. Welcher Art diese „Energie“ ist, wollen Astronomen und Physiker im Rahmen des eRosita-Projekts herausfinden, indem sie mit einem Bündel von sieben Röntgenteleskopen die Verteilung von etwa 100 000 Galaxienhaufen und von Millionen Schwarzer Löcher im Weltraum untersuchen. Dass der dafür entwickelte Röntgendetektor seiner Aufgabe auch gerecht werden kann, haben Wissenschaftler der PTB mithilfe zweier Elektronenspeicherringe nachgewiesen:

Mit der PTB-eigenen Metrology Light Source wurde in erster Linie die Abschirmung von störendem UV- und sichtbarem Licht überprüft, während im PTB-Labor bei BESSY II in Berlin-Adlershof die Empfindlichkeit des Detektors im Bereich weicher Röntgenstrahlung ermittelt wurde.

Bei dem Detektor handelt es sich um einen von der Rückseite beleuchteten, 450 Mikrometer dicken pn-CCD-Chip, der sich durch Langzeitstabilität und eine hohe Lichtempfindlichkeit auszeichnet. Der Detektor hat einen ultradünnen pn-Übergang als Strahlungseintrittsfenster, um vor allem niedrige Röntgenenergien nachweisen zu können. Ein direkt auf dem Chip angebrachter Filter unterdrückt die störende Strahlung im sichtbaren und UV-Bereich.

An eRosita sind unter Federführung des Max-Planck-Instituts für extraterrestrische Physik mehrere Forschungseinrichtungen und Unternehmen beteiligt. Finanziert wird das Projekt vom Deutschen Forschungszentrum für Luft- und Raumfahrt (DLR).

Ansprechpartner:
Michael Krumrey, Röntgenradiometrie, Arbeitsgruppe 7.11, Tel.: (030) 6392-5085, E-Mail: michael.krumrey@ptb.de

Frank Scholze, EUV-Radiometrie, Arbeitsgruppe 7.22, Tel.: (030) 6392-5094, E-Mail: frank.scholze@ptb.de

Informationen zu eRosita
eRosita steht für Roentgen Survey with an Imaging Telescope Array
Webseite des Max-Planck-Instituts für extraterrestrische Physik
http://www.mpe.mpg.de/projects-d.html

Media Contact

Imke Frischmuth idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Kombination von Schwerionentherapie und mRNA-Impfstoff

Gemeinsam für die Krebsforschung: TRON und GSI/FAIR untersuchen Kombination von Schwerionentherapie und mRNA-Impfstoff. Es könnte eine neue, vielversprechende Kombination von zwei Therapieansätzen sein und ein Schlüssel, um Krebserkrankungen im fortgeschrittenen…

Partner & Förderer