Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenteleskop „Athena“ blickt in die Anfänge des Universums

17.12.2013
Tübinger Wissenschaftler des Kepler Centers für Astro- und Teilchenphysik sind an ESA-Projekt zum Bau eines Observatoriums im Weltall beteiligt

Wissenschaftler der Universität Tübingen haben die Vorarbeit für die nächste Großmission der Europäischen Weltraumorganisation ESA geleistet: Das Milliardenprojekt soll auf einem Konzept basieren, an dessen Erarbeitung das Institut für Astronomie und Astrophysik (IAAT) im Kepler Center für Astro- und Teilchenphysik Tübingen wesentlich beteiligt war.


Das zukünftige Röntgenobservatorium „Athena“ könnte Hinweise liefern, wie sich großräumige Strukturen im Universum bildeten.

Abbildung: © Athena collaboration

„Das heiße und energetische Universum“ wurde von der ESA aus 37 Themenvorschlägen ausgewählt. Gemeinsam mit Wissenschaftlern aus 20 Ländern und unter Leitung des Max-Planck-Instituts für Extraterrestrische Physik in Garching (MPE) hatten die Tübinger Forscher um Professor Andrea Santangelo den Programmvorschlag erarbeitet. In den nächsten Jahren werden sie auch an der Entwicklung von Instrumenten für diese Mission beteiligt sein.

Dem Konzept des Teams folgend will die ESA im Weltall das Röntgenobservatorium „Advanced Telescope for High-Energy Astrophysics” (Athena) aufbauen. Es soll weit in die Anfänge des Universums zurückblicken und die Strukturbildung der Materie nach dem Urknall erforschen ‒ eines der Mysterien im Bereich der Kosmologie. Als nächster Schritt wird die Technologie für das Vorhaben entwickelt. Das Röntgenteleskop soll eine hohe Empfindlichkeit, eine exzellente spektrale Auflösung sowie ein großes Gesichtsfeld erhalten.

Die Tübinger werden nun auch an der Technologie für Athena mitarbeiten, wie Dr. Chris Tenzer erklärt, der an Universität Tübingen die experimentellen Aktivitäten der Arbeitsgruppe für Hochenergieastrophysik koordiniert. „Das IAAT und speziell die Arbeitsgruppe sind eines von mehreren deutschen Instituten, die zu den Instrumenten für Athena beitragen. Wir werden Hardware wie Elektronik und mechanische Teile entwickeln und umfangreiche Simulationen durchführen, die ein besseres Design der Instrumente ermöglichen.“

Beteiligt ist die Universität Tübingen an der Entwicklung des Wide-Field-Imagers (WFI), der eine weiträumige und beispiellos tiefe Beobachtung des Röntgenhimmels durchführen wird und so Quellen von Röntgenstrahlung für die Forscher sichtbar macht. Zudem planen die Tübinger Beiträge zum X-ray Integral Field Unit (X-IFU), einem hochauflösenden Mikrokalorimeter, das eine extrem hohe Spektralauflösung mit räumlicher Auflösung kombiniert und somit eine genaue Studie der beobachteten Röntgenquellen ermöglicht.

Wie sich die ersten Galaxien bildeten

Die ESA-Mission soll 2028 ins Weltall starten und zwei Kernfragen der modernen Astrophysik aufklären: Wie bildeten sich die großräumigen Strukturen, also Galaxien und Galaxienhaufen, die wir heute sehen? Wie sind Schwarze Löcher gewachsen, und wie beeinflussen sie ihre Umgebung? „Die Suche nach Hinweisen darauf, wie sich die gewöhnliche sichtbare Materie unter dem Einfluss von Dunkler Materie zu Galaxien und Galaxienhaufen, den größten beobachtbaren Strukturen im Universum, geformt hat, ist eine spannende Herausforderung”, sagt Professor Andrea Santangelo, Leiter der Abteilung Hochenergieastrophysik im Kepler Center für Astro- und Teilchenphysik. Besonders interessant ist zudem die Frage der Entstehung supermassereicher Schwarzer Löcher‒ mit der milliardenfachen Masse unserer Sonne ‒ in der Frühzeit der kosmologischen Entwicklung und ihre Wechselwirkung mit ihrer Umgebung durch Teilchenwinde und energiereiche Strahlungsjets.

„Durch die Mission können wir unser Wissen über die Physik der astronomischen Objekte innerhalb und außerhalb unserer Milchstraße erweitern“, sagt Dr. Manami Sasaki, Leiterin einer eigenen DFG-Forschungsgruppe am IAAT. „Athena wird tief ins Universum schauen, zurück zu Zeitpunkten, an denen sich die ersten Sterne, Galaxien und Schwarzen Löcher bildeten. Dadurch werden neue Entdeckungen im Bereich der Kosmologie möglich“, erläutert Professor Santangelo. „Wir sind stolz darauf, bei dieser Mission dabei zu sein. Hier in Tübingen können wir zudem eine neue Generation von Studenten an den Forschungsarbeiten beteiligen.“

Prof. Dr. Andrea Santangelo
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik
Telefon +49 7071 29-76128
santangelo[at]astro.uni-tuebingen.de
Weitere Informationen:
http://www.esa.int/Our_Activities/Space_Science/ESA_s_new_vision_to_study_the_invisible_Universe
http://www.uni-tuebingen.de/?id=4583

Antje Karbe | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie