Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Röntgenstroboskop für Moleküle

06.08.2013
Knapp zwei Millionen Euro erhalten Frankfurter Physiker vom BMBF für die Entwicklung eines Reaktionsmikroskops. An der stärksten europäischen Röntgenquelle XFEL bei Hamburg wollen sie damit extrem schnelle, bisher nicht beobachtbare Prozesse in Molekülen „filmen“.

Für die stärkste Röntgenquelle der Welt, die zur Zeit für über eine Milliarde Euro am Forschungszentrum DESY in Hamburg entsteht, entwickeln Frankfurter Physiker ein Reaktionsmikroskop, mit dem sie extrem schnelle Prozesse in Molekülen „filmen“ können.

Ausgangspunkt ist die in Frankfurt entwickelte spektroskopische COLTRIMS-Methode (Cold Target Recoil Ion Momentum Spectroscopy), die für diese Zwecke weiterentwickelt wird. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Vorhaben mit insgesamt knapp zwei Millionen Euro.

Einzelne Atome, Moleküle oder Cluster sollen mit den sehr intensiven Laserpulsen der Röntgenquelle XFEL angeregt werden. Mit dem Reaktionsmikropskop werden dann die Richtung und Energie aller geladenen Fragmente rekonstruiert. Das Besondere ist: die Detektoren, Elektronik und Datenaufnahme sind bereits jetzt in der Lage, mehrere Teilchen gleichzeitig nachzuweisen. Durch die Kombination von COLTRIMS mit den am European XFEL zu Verfügung stehenden Lichtpulsen mit einzigartigen Intensitäten, Wiederholraten und Photonenenergien wird es erstmals möglich sein, Mehrteilchensysteme wie etwa Moleküle oder Cluster extrem effizient und kontrolliert in Teilprozesse zu zerlegen, die sich auf extrem kurzen Zeitskalen von Femtosekunden abspielen. Eine Femtosekunde ist der millionste Teil einer milliardstel Sekunde.

„Eine der großen Herausforderungen in fast allen aktuellen Forschungsgebieten der Physik und Chemie ist es, die korrelierte Dynamik von Vielteilchensystemen zu untersuchen“, erklärt Projektleiter Prof. Reinhard Dörner vom Institut für Kernphysik der Goethe-Universität. Er vergleicht die Situation mit einem Fußballspiel, von dem man mit bisherigen Methoden nur ein einziges Standbild eines einzigen Spielers aufnehmen konnte. Will man aber den Verlauf des Spiels beobachten oder gar vorhersagen, in welche Richtung ein Pass gehen wird, muss man die Positionen und Geschwindigkeiten aller beteiligten Spieler kennen. Ebenso verhält es sich, wenn man viele der grundlegenden Mechanismen in der Physik und Chemie verstehen will, sei es die Dynamik chemischer Reaktionen oder die Wechselwirkung zwischen Licht und Materie.

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Riedberg, Tel.: (069) 798-47003; doerner@atom.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Dirk Frank, Pressereferent / stv. Leiter, Abteilung Marketing und Kommunikation, Grüneburgplatz 1, 60323 Frankfurt am Main, Telefon (069) 798 – 13753, Telefax (069) 798 – 76312531, E-Mail frank@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie