Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Röntgenstrahlung vom Festkörper zum Plasma

26.01.2012
Physiker der Universität Jena produziert heiße dichte Materie in internationalem Team

Mit einem Äquatordurchmesser von mehr als 140.000 Kilometer ist der Jupiter der größte Planet unseres Sonnensystems. Nach Sonne, Mond und Venus ist er das vierthellste Objekt am Nachthimmel, so dass ihn bereits die Menschen der Antike beobachtet haben. Doch was sich im Inneren der Gasplaneten abspielt, ist bisher weitgehend unbekannt. Einen großen Schritt zu neuen Erkenntnissen über den Gasriesen lieferte jetzt ein wenige Mikrometer großes Aluminiumstück.


Dr. Ulf Zastrau von der Universität Jena erforscht in einem internationalen Team heiße dichte Materie. Foto: Jan-Peter Kasper/FSU

Wie das Wissenschaftsmagazin „Nature“ in der aktuellen Ausgabe berichtet (www.nature.com), ist es einer internationalen Forschergruppe zum ersten Mal gelungen, mit einem intensiven Röntgenpuls einen Festkörper anzuregen, d. h. ihn vom festen direkt in den plasmaförmigen Aggregatzustand zu befördern. Auch der Physiker Dr. Ulf Zastrau von der Friedrich-Schiller-Universität Jena hat an diesem Projekt mitgearbeitet. Für ihre Untersuchungen nutzten die Wissenschaftler den derzeit weltgrößten Röntgen-Freie-Elektronen-Laser „Linac Coherent Light Source“ (LCLS) im amerikanischen Stanford.

„Bei der Umwandlung der Aluminiumprobe entstand sogenannte heiße dichte Materie – der Stoff aus dem Gasplaneten zu einem großen Teil bestehen“, erklärt der Jenaer Physiker aus der Arbeitsgruppe Röntgenoptik unter der Leitung von Prof. Dr. Eckhart Förster. „Er kommt auf der Erde selbst nicht vor und lässt sich auch nur sehr schwer künstlich herstellen.“ Auch bei dem Experiment mit der LCLS bestand die heiße dichte Materie nur für wenige Augenblicke, bevor sie verdampfte. Genug Zeit blieb allerdings für die Forscher aus den USA, Großbritannien, Deutschland, Österreich und Tschechien, um Untersuchungen anzustellen, deren Auswertungen sie noch über Jahre beschäftigen werden.

Ein Ergebnis konnte jedoch bereits in der Nature-Veröffentlichung mitgeteilt werden. Es betrifft in erster Linie den Entstehungsprozess der heißen dichten Materie aus dem Aluminiumfestkörper. Trifft Röntgenstrahlung auf Atome, wird sie absorbiert und ein Elektron freigesetzt. „Bei gasförmigen Proben sind die Atome sehr weit voneinander entfernt“, erläutert Zastrau. „Aus früheren Experimenten haben wir gelernt, dass die Elektronen bei ihren Atomen bleiben und sich nach einer gewissen Zeit wieder an diese anlagern.“ Bei einem Festkörper gestalte sich das anders. Die Elektronen stoßen, ähnlich wie in einem Billardspiel, aufgrund der höheren Dichte mit benachbarten Atomen zusammen und setzen dadurch viele zusätzliche Elektronen frei. „Diese Kollisionen sind der entscheidende Prozess dafür, wie sich das resultierende Plasma – und damit die heiße dichte Materie – entwickelt“, fasst der Physiker der Universität Jena das Ergebnis zusammen.

In erster Linie sind diese Untersuchungen Grundlagenforschung für die Plasma- und Astrophysik. Denn was bei den Experimenten nur für einen Bruchteil von Sekunden stabil ist, existiert im Inneren von großen Planeten und Sternen seit Jahrmillionen. Mit den neuen Erkenntnissen können sich die Forscher nun ein präziseres Bild davon machen, aus welchen Schichten sie aufgebaut sind, welche Temperaturen und Drücke in ihrem Inneren vorherrschen und wie ihr Magnetfeld entsteht. Die Ergebnisse könnten aber auch wichtige Informationen liefern, wie es in Zukunft gelingt, mittels Teilchenfusion effektiv Energie zu gewinnen – denn das machen uns die Sterne am besten vor.

Originalpublikation:
Sam M Vinko, O Ciricosta, B I Cho, K Engelhorn, H-K Chung, C RD Brown, T Burian, J Chalupsky, R W Falcone, C Graves, V Hajkova, A Higginbotham, H J Lee, M Messerschmidt, C D Murphy, Y Ping, A Scherz, W Schlotter, S Toleikis, J J Turner, L Vysin, T Wang, B Wu, U Zastrau, D Zhu, R W Lee, P A Heimann, B Nagler, J S Wark (2012): Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. DOI: 10.1038/nature10746

Kontakt:
Dr. Ulf Zastrau
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947610
E-Mail: ulf.zastrau[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Atom Elektron Festkörper Gasplanet LCLS Materie Physik Planet Plasma technology Röntgenstrahl Zastrau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie