Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Röntgenstrahlung vom Festkörper zum Plasma

26.01.2012
Physiker der Universität Jena produziert heiße dichte Materie in internationalem Team

Mit einem Äquatordurchmesser von mehr als 140.000 Kilometer ist der Jupiter der größte Planet unseres Sonnensystems. Nach Sonne, Mond und Venus ist er das vierthellste Objekt am Nachthimmel, so dass ihn bereits die Menschen der Antike beobachtet haben. Doch was sich im Inneren der Gasplaneten abspielt, ist bisher weitgehend unbekannt. Einen großen Schritt zu neuen Erkenntnissen über den Gasriesen lieferte jetzt ein wenige Mikrometer großes Aluminiumstück.


Dr. Ulf Zastrau von der Universität Jena erforscht in einem internationalen Team heiße dichte Materie. Foto: Jan-Peter Kasper/FSU

Wie das Wissenschaftsmagazin „Nature“ in der aktuellen Ausgabe berichtet (www.nature.com), ist es einer internationalen Forschergruppe zum ersten Mal gelungen, mit einem intensiven Röntgenpuls einen Festkörper anzuregen, d. h. ihn vom festen direkt in den plasmaförmigen Aggregatzustand zu befördern. Auch der Physiker Dr. Ulf Zastrau von der Friedrich-Schiller-Universität Jena hat an diesem Projekt mitgearbeitet. Für ihre Untersuchungen nutzten die Wissenschaftler den derzeit weltgrößten Röntgen-Freie-Elektronen-Laser „Linac Coherent Light Source“ (LCLS) im amerikanischen Stanford.

„Bei der Umwandlung der Aluminiumprobe entstand sogenannte heiße dichte Materie – der Stoff aus dem Gasplaneten zu einem großen Teil bestehen“, erklärt der Jenaer Physiker aus der Arbeitsgruppe Röntgenoptik unter der Leitung von Prof. Dr. Eckhart Förster. „Er kommt auf der Erde selbst nicht vor und lässt sich auch nur sehr schwer künstlich herstellen.“ Auch bei dem Experiment mit der LCLS bestand die heiße dichte Materie nur für wenige Augenblicke, bevor sie verdampfte. Genug Zeit blieb allerdings für die Forscher aus den USA, Großbritannien, Deutschland, Österreich und Tschechien, um Untersuchungen anzustellen, deren Auswertungen sie noch über Jahre beschäftigen werden.

Ein Ergebnis konnte jedoch bereits in der Nature-Veröffentlichung mitgeteilt werden. Es betrifft in erster Linie den Entstehungsprozess der heißen dichten Materie aus dem Aluminiumfestkörper. Trifft Röntgenstrahlung auf Atome, wird sie absorbiert und ein Elektron freigesetzt. „Bei gasförmigen Proben sind die Atome sehr weit voneinander entfernt“, erläutert Zastrau. „Aus früheren Experimenten haben wir gelernt, dass die Elektronen bei ihren Atomen bleiben und sich nach einer gewissen Zeit wieder an diese anlagern.“ Bei einem Festkörper gestalte sich das anders. Die Elektronen stoßen, ähnlich wie in einem Billardspiel, aufgrund der höheren Dichte mit benachbarten Atomen zusammen und setzen dadurch viele zusätzliche Elektronen frei. „Diese Kollisionen sind der entscheidende Prozess dafür, wie sich das resultierende Plasma – und damit die heiße dichte Materie – entwickelt“, fasst der Physiker der Universität Jena das Ergebnis zusammen.

In erster Linie sind diese Untersuchungen Grundlagenforschung für die Plasma- und Astrophysik. Denn was bei den Experimenten nur für einen Bruchteil von Sekunden stabil ist, existiert im Inneren von großen Planeten und Sternen seit Jahrmillionen. Mit den neuen Erkenntnissen können sich die Forscher nun ein präziseres Bild davon machen, aus welchen Schichten sie aufgebaut sind, welche Temperaturen und Drücke in ihrem Inneren vorherrschen und wie ihr Magnetfeld entsteht. Die Ergebnisse könnten aber auch wichtige Informationen liefern, wie es in Zukunft gelingt, mittels Teilchenfusion effektiv Energie zu gewinnen – denn das machen uns die Sterne am besten vor.

Originalpublikation:
Sam M Vinko, O Ciricosta, B I Cho, K Engelhorn, H-K Chung, C RD Brown, T Burian, J Chalupsky, R W Falcone, C Graves, V Hajkova, A Higginbotham, H J Lee, M Messerschmidt, C D Murphy, Y Ping, A Scherz, W Schlotter, S Toleikis, J J Turner, L Vysin, T Wang, B Wu, U Zastrau, D Zhu, R W Lee, P A Heimann, B Nagler, J S Wark (2012): Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. DOI: 10.1038/nature10746

Kontakt:
Dr. Ulf Zastrau
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947610
E-Mail: ulf.zastrau[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Atom Elektron Festkörper Gasplanet LCLS Materie Physik Planet Plasma technology Röntgenstrahl Zastrau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics