Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlaser-Technik ebnet den Weg zu neuen biologischen Erkenntnissen

01.06.2012
Erste hochauflösende Strukturanalyse von Biomolekülen zeigt Potenzial von Freie-Elektronen-Lasern

Ein internationales Forscherteam hat erstmals die innere Struktur eines Biomoleküls hochaufgelöst mit einem Röntgenlaser analysiert. Die Studie an der Linac Coherent Light Source (LCLS) des US-Beschleunigerzentrums SLAC demonstriere das enorme Potenzial sogenannter Freie-Elektronen-Laser (FEL) für die Strukturbiologie, schreiben die Wissenschaftler im US-Fachjournal „Science“.


Koloriertes Beugungsbild eines Röntgenblitzes an einem Lysozym-Mikrokristall

Das internationale Team, darunter Forscher vom Center for Free-Electron Laser Science (CFEL) auf dem DESY-Campus in Hamburg, entzifferte die Struktur des Enzyms Lysozym aus dem Hühnereiweiß auf 0,19 Nanometer genau.

Lysozym ist ein extrem gut untersuchtes Biomolekül, das in der aktuellen Studie als Modellsystem diente, um die Genauigkeit der Methode zu belegen, wie die Forscher um Sébastien Boutet vom SLAC betonen.

„Die außergewöhnlich intensiven Röntgenblitze von FELs ermöglichen die Analyse ganz neuer Klassen von Biomolekülen wie etwa Proteinen aus der Zellmembran, die sich nur schwer oder fast gar nicht kristallisieren lassen“, unterstreicht Ko-Autor und CFEL-Forscher Henry Chapman vom DESY. „Das erlaubt uns, unkartiertes Gelände der Biologie zu erkunden.“ Das CFEL ist ein Gemeinschaftsunternehmen von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.

Die Struktur von Biomolekülen ist von großer Bedeutung für Medizin und Biologie, denn ihre Form bestimmt oft über ihre Funktion. Ausgehend von der Struktur eines Enzyms, das etwa für einen Zellrezeptor eine entscheidende Rolle spielt, lässt sich unter Umständen ein maßgeschneidertes Medikament entwickeln. Bisher werden solche Strukturen üblicherweise mit der Röntgenkristallographie an Synchrotronstrahlungsquellen untersucht. Doch dafür sind vergleichsweise große und sehr regelmäßige Kristalle der Probensubstanz nötig. Die Röntgenstrahlung wird an dem regelmäßigen Kristallgitter gestreut, und dieses Beugungsmuster gibt Aufschluss über die Struktur des Kristalls. Viele Biomoleküle sind jedoch nur schwer zu kristallisieren und nicht sehr widerstandsfähig gegen Röntgenstrahlung.

Neuartige Röntgenlaser wie die LCLS oder der in Hamburg im Bau befindliche europäische Röntgenlaser European XFEL bieten die Chance, solche bislang unzugänglichen Strukturen zu untersuchen. Denn die Röntgenblitze dieser Instrumente sind so hell, dass bereits winzigste Kristalle ausreichen, um gute Beugungsbilder aufzunehmen. Allerdings werden die Proben durch das intensive Röntgenlicht nahezu sofort zerstört. Vor dem Verdampfen der Probe lassen sich jedoch noch exzellente Beugungsbilder aufnehmen. „Wir konnten zeigen, dass sich hochaufgelöste Informationen aufnehmen lassen, bevor Strahlungsschäden wirksam werden“, erläutert Anton Barty aus der Gruppe von Chapman. „Der Schlüssel sind die ultrakurzen Pulse – es zeigt sich kein Schaden, bevor der Röntgenpuls nicht schon vorbei ist.“

Die verwendeten Röntgenblitze waren bis zu fünf Femtosekunden kurz. Eine Femtosekunde ist der billiardste Teil einer Sekunde. Da die Proben von den Blitzen zerstört werden, verwendeten die Forscher statt eines einzelnen, großen Kristalls Millionen Mikrokristalle mit typischen Abmessungen von einem mal einem mal drei Mikrometern (tausendstel Millimetern), die sie in einer Lösung senkrecht durch den Laser fließen ließen. Unter etwa 3,5 Millionen Röntgenblitzen registrierten die Forscher rund 100 000 Treffer, aus denen sich die Lysozym-Struktur schließlich berechnen und mit früheren Analysen von sehr viel größeren Lysozym-Kristallen vergleichen ließ. „Die gute Übereinstimmung macht die Methode zu einem wertvollen Werkzeug für Systeme, bei denen sich nur winzige Kristalle gewinnen lassen“, unterstreicht Ko-Autorin Ilme Schlichting vom Max-Planck-Institut für medizinische Forschung in Heidelberg.

Die Forscher hatten die Methode zuvor mit anderen Biomolekülen ausprobiert. Diese Untersuchungen hatten allerdings noch nicht die hohe Auflösung erreicht, die für neue Erkenntnisse in der Strukturbiologie nötig ist. Dank eines neuen Instruments an der LCLS, dem Coherent X-ray Imaging Instrument (CXI) konnten sie nun Röntgenstrahlung mit einer Wellenlänge von 0,132 Nanometern analysieren.

Zum Vergleich: Sichtbares Licht hat Wellenlängen zwischen 400 und 800 Nanometern (ein Nanometer ist der millionste Teil eines Millimeters). Die Wellenlänge der verwendeten Strahlung bestimmt die Detailgröße, die sich noch erkennen lässt. „Wir können die intensiven LCLS-Pulse nutzen, um die Struktur des Moleküls so fein abzubilden, dass wir beginnen, auf die Position einzelner Atome schließen zu können“, betont Erstautor Séastien Boutet. „Diese wichtige Demonstration zeigt, dass die Technik funktioniert, und sie ebnet den Weg für eine Vielzahl spannender künftiger Experimente.“

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/infos__services/presse/pressemeldungen/2012/pm_310512/index_ger.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau