Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblitze zeigen freie Nanopartikel erstmals in 3D

04.02.2015

Ein deutsch-amerikanisches Forscherteam hat mit DESYs Röntgenlaser FLASH erstmals die dreidimensionale Form frei fliegender Silber-Nanopartikel bestimmt. Die winzigen Teilchen, hunderte Male dünner als ein menschliches Haar, besitzen demnach einen viel größeren Formenreichtum als erwartet, wie die Physiker der Technischen Universität (TU) Berlin, der Universität Rostock, des US-Beschleunigerzentrums SLAC und von DESY im Fachblatt „Nature Communications“ berichten. Die Ergebnisse weisen darüber hinaus einen Weg zu neuen Forschungsansätzen wie zum Beispiel die direkte Beobachtung schneller Veränderungen in Nanopartikeln.

Nanopartikel sind dabei, unseren Alltag zu erobern. Die Anwendungen dieser winzigen, mit dem Auge nicht wahrnehmbaren Teilchen reichen vom Sonnenschutz über Effektlacke, Farbfilter und elektronischen Komponenten bis hin zum medizinischen Einsatz, etwa zur Krebsbekämpfung. „Die Funktionalität der Nanopartikel ist mit ihrer geometrischen Form verknüpft, die oft experimentell sehr schwierig zu bestimmen ist“, erläutert Dr. Ingo Barke von der Universität Rostock. „Das gilt vor allem, wenn sie als freie Teilchen vorliegen, also ohne Kontakt zu einem Untergrund oder einer Flüssigkeit.“


Röntgen-Streubild eines Nanopartikels in Form eines Zwillings-Tetraederstumpfs.

Bild: Hannes Hartmann/Universität Rostock

Die Gestalt eines Nanopartikels lässt sich aus der charakteristischen Art und Weise berechnen, wie es Röntgenlicht streut. Röntgenquellen wie DESYs FLASH dienen damit als eine Art Supermikroskop für die Nanowelt. Bisher ist die räumliche Struktur von Nanopartikeln üblicherweise aus mehreren zweidimensionalen Aufnahmen rekonstruiert worden, die aus unterschiedlichen Richtungen aufgenommen wurden. Bei Teilchen, die sich auf festen Substraten befinden, ist das kein Problem – sie können aus vielen verschiedenen Richtungen aufgenommen werden, um ihre dreidimensionale Form zweifelsfrei zu rekonstruieren.

„Bringt man Nanopartikel in Kontakt mit einer Oberfläche oder Flüssigkeit, können sie sich jedoch verändern, so dass wir nicht mehr ihre eigentliche Form sehen“, sagt Dr. Daniela Rupp von der TU Berlin. Ein freies Teilchen kann im Flug jedoch nur ein einziges Mal abgebildet werden, bevor es aus dem Untersuchungsbereich entkommen ist oder durch das intensive Röntgenlicht zerstört wurde. Daher ist eine Methode notwendig, bei der bereits das Streubild eines einzigen Laserblitzes die volle räumliche Strukturinformation enthält.

Den Physikern um Prof. Thomas Möller von der TU Berlin und Prof. Karl-Heinz Meiwes-Broer und Prof. Thomas Fennel von der Universität Rostock ist dies nun in Zusammenarbeit mit den Kollegen von SLAC und DESY am Röntgenlaser FLASH mit einem Trick gelungen. Dazu wird das Streubild nicht wie sonst üblich unter einem kleinen Winkel rund um die Richtung des einfallenden Röntgenblitzes aufgenommen, sondern in einem weiten Bereich um das Nanopartikel herum. „Mit diesem Ansatz nehmen wir sozusagen gleichzeitig die Struktur aus vielen unterschiedlichen Richtungen auf, ohne die Teilchen mehrfach belichten zu müssen“, erklärt Fennel.

Die Forscher testeten dieses Verfahren an 50 bis 250 Nanometer (0,00005 bis 0,00025 Millimeter) kleinen Nanoteilchen aus Silber, die in einem Trägergas durch den Röntgenstrahl geleitet wurden. Der Test belegt nicht nur, dass diese Methode funktioniert, sondern förderte auch überraschende Ergebnisse zutage. Die Untersuchung zeigt, dass vergleichsweise große Nanoteilchen eine größere Formenvielfalt aufweisen als erwartet.

Die äußere Gestalt von freien Nanoteilchen resultiert aus unterschiedlichen physikalischen Prinzipien, besonders aber aus dem Bestreben des Teilchens, seine Energie zu minimieren. Dadurch ergeben sich für große Partikel aus Tausenden oder Millionen von Atomen oft vorhersagbare Formen, da diese Atome nur in einer bestimmten Art und Weise energetisch besonders günstig angeordnet sind.

In ihrer Untersuchung beobachteten die Forscher jedoch zahlreiche hochsymmetrische dreidimensionale Formen, darunter sogenannte Platonische und Archimedische Körper wie den Oktaederstumpf (ein Körper aus acht gleichen Dreiecken, dessen Spitzen gekappt wurden) und den Ikosaeder (ein Körper aus zwanzig gleichen Dreiecken). Letzterer ist eigentlich nur für extrem kleine Teilchen aus wenigen Atomen besonders stabil, und sein Vorkommen bei freien Partikeln dieser Größe war bisher nicht bekannt. „Die Ergebnisse zeigen, dass metallische Nanopartikel eine Art Gedächtnis ihrer Struktur aus frühen Wachstumsstadien bis hin zu einem bisher unerforschten Größenbereich behalten“, führt Barke aus.

Insbesondere wegen der Formenvielfalt war es besonders wichtig, eine schnelle Rechenmethode zu verwenden, um die Gestalt jedes einzelnen Teilchens zuordnen zu können. Die Forscher bedienten sich dabei eines zweistufigen Verfahrens: Zunächst wurde die grobe Form bestimmt, die dann mit aufwändigen Simulationen an einem Großrechner bis ins Detail verfeinert wurde. Diese Taktik stellte sich als so effizient heraus, dass sie nicht nur eine große Vielfalt an Formen zuverlässig bestimmen, sondern auch unterschiedliche Orientierungen derselben Form unterscheiden konnte.

Die neue Möglichkeit, die dreidimensionale Form und Orientierung von Nanopartikeln mit nur einem einzigen Schuss eines Röntgenlasers bestimmen zu können, eröffnet eine Vielzahl neuer Forschungsrichtungen. Teilchen könnten in zukünftigen Projekten beim Wachstum oder während Phasenübergängen direkt dreidimensional „gefilmt“ werden. „Die Reaktion eines Teilchens auf den intensiven Röntgenblitz direkt zu filmen ist ein lang gehegter Traum vieler Physiker, der jetzt Wirklichkeit werden könnte – und das in 3D!“, freut sich Rupp.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=719&... - weitere Bilder
http://dx.doi.org/10.1038/ncomms7187 - Originalveröffentlichung: „The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering"; Nature Communications, 2015

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics