Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblitze zeigen freie Nanopartikel erstmals in 3D

04.02.2015

Ein deutsch-amerikanisches Forscherteam hat mit DESYs Röntgenlaser FLASH erstmals die dreidimensionale Form frei fliegender Silber-Nanopartikel bestimmt. Die winzigen Teilchen, hunderte Male dünner als ein menschliches Haar, besitzen demnach einen viel größeren Formenreichtum als erwartet, wie die Physiker der Technischen Universität (TU) Berlin, der Universität Rostock, des US-Beschleunigerzentrums SLAC und von DESY im Fachblatt „Nature Communications“ berichten. Die Ergebnisse weisen darüber hinaus einen Weg zu neuen Forschungsansätzen wie zum Beispiel die direkte Beobachtung schneller Veränderungen in Nanopartikeln.

Nanopartikel sind dabei, unseren Alltag zu erobern. Die Anwendungen dieser winzigen, mit dem Auge nicht wahrnehmbaren Teilchen reichen vom Sonnenschutz über Effektlacke, Farbfilter und elektronischen Komponenten bis hin zum medizinischen Einsatz, etwa zur Krebsbekämpfung. „Die Funktionalität der Nanopartikel ist mit ihrer geometrischen Form verknüpft, die oft experimentell sehr schwierig zu bestimmen ist“, erläutert Dr. Ingo Barke von der Universität Rostock. „Das gilt vor allem, wenn sie als freie Teilchen vorliegen, also ohne Kontakt zu einem Untergrund oder einer Flüssigkeit.“


Röntgen-Streubild eines Nanopartikels in Form eines Zwillings-Tetraederstumpfs.

Bild: Hannes Hartmann/Universität Rostock

Die Gestalt eines Nanopartikels lässt sich aus der charakteristischen Art und Weise berechnen, wie es Röntgenlicht streut. Röntgenquellen wie DESYs FLASH dienen damit als eine Art Supermikroskop für die Nanowelt. Bisher ist die räumliche Struktur von Nanopartikeln üblicherweise aus mehreren zweidimensionalen Aufnahmen rekonstruiert worden, die aus unterschiedlichen Richtungen aufgenommen wurden. Bei Teilchen, die sich auf festen Substraten befinden, ist das kein Problem – sie können aus vielen verschiedenen Richtungen aufgenommen werden, um ihre dreidimensionale Form zweifelsfrei zu rekonstruieren.

„Bringt man Nanopartikel in Kontakt mit einer Oberfläche oder Flüssigkeit, können sie sich jedoch verändern, so dass wir nicht mehr ihre eigentliche Form sehen“, sagt Dr. Daniela Rupp von der TU Berlin. Ein freies Teilchen kann im Flug jedoch nur ein einziges Mal abgebildet werden, bevor es aus dem Untersuchungsbereich entkommen ist oder durch das intensive Röntgenlicht zerstört wurde. Daher ist eine Methode notwendig, bei der bereits das Streubild eines einzigen Laserblitzes die volle räumliche Strukturinformation enthält.

Den Physikern um Prof. Thomas Möller von der TU Berlin und Prof. Karl-Heinz Meiwes-Broer und Prof. Thomas Fennel von der Universität Rostock ist dies nun in Zusammenarbeit mit den Kollegen von SLAC und DESY am Röntgenlaser FLASH mit einem Trick gelungen. Dazu wird das Streubild nicht wie sonst üblich unter einem kleinen Winkel rund um die Richtung des einfallenden Röntgenblitzes aufgenommen, sondern in einem weiten Bereich um das Nanopartikel herum. „Mit diesem Ansatz nehmen wir sozusagen gleichzeitig die Struktur aus vielen unterschiedlichen Richtungen auf, ohne die Teilchen mehrfach belichten zu müssen“, erklärt Fennel.

Die Forscher testeten dieses Verfahren an 50 bis 250 Nanometer (0,00005 bis 0,00025 Millimeter) kleinen Nanoteilchen aus Silber, die in einem Trägergas durch den Röntgenstrahl geleitet wurden. Der Test belegt nicht nur, dass diese Methode funktioniert, sondern förderte auch überraschende Ergebnisse zutage. Die Untersuchung zeigt, dass vergleichsweise große Nanoteilchen eine größere Formenvielfalt aufweisen als erwartet.

Die äußere Gestalt von freien Nanoteilchen resultiert aus unterschiedlichen physikalischen Prinzipien, besonders aber aus dem Bestreben des Teilchens, seine Energie zu minimieren. Dadurch ergeben sich für große Partikel aus Tausenden oder Millionen von Atomen oft vorhersagbare Formen, da diese Atome nur in einer bestimmten Art und Weise energetisch besonders günstig angeordnet sind.

In ihrer Untersuchung beobachteten die Forscher jedoch zahlreiche hochsymmetrische dreidimensionale Formen, darunter sogenannte Platonische und Archimedische Körper wie den Oktaederstumpf (ein Körper aus acht gleichen Dreiecken, dessen Spitzen gekappt wurden) und den Ikosaeder (ein Körper aus zwanzig gleichen Dreiecken). Letzterer ist eigentlich nur für extrem kleine Teilchen aus wenigen Atomen besonders stabil, und sein Vorkommen bei freien Partikeln dieser Größe war bisher nicht bekannt. „Die Ergebnisse zeigen, dass metallische Nanopartikel eine Art Gedächtnis ihrer Struktur aus frühen Wachstumsstadien bis hin zu einem bisher unerforschten Größenbereich behalten“, führt Barke aus.

Insbesondere wegen der Formenvielfalt war es besonders wichtig, eine schnelle Rechenmethode zu verwenden, um die Gestalt jedes einzelnen Teilchens zuordnen zu können. Die Forscher bedienten sich dabei eines zweistufigen Verfahrens: Zunächst wurde die grobe Form bestimmt, die dann mit aufwändigen Simulationen an einem Großrechner bis ins Detail verfeinert wurde. Diese Taktik stellte sich als so effizient heraus, dass sie nicht nur eine große Vielfalt an Formen zuverlässig bestimmen, sondern auch unterschiedliche Orientierungen derselben Form unterscheiden konnte.

Die neue Möglichkeit, die dreidimensionale Form und Orientierung von Nanopartikeln mit nur einem einzigen Schuss eines Röntgenlasers bestimmen zu können, eröffnet eine Vielzahl neuer Forschungsrichtungen. Teilchen könnten in zukünftigen Projekten beim Wachstum oder während Phasenübergängen direkt dreidimensional „gefilmt“ werden. „Die Reaktion eines Teilchens auf den intensiven Röntgenblitz direkt zu filmen ist ein lang gehegter Traum vieler Physiker, der jetzt Wirklichkeit werden könnte – und das in 3D!“, freut sich Rupp.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=719&... - weitere Bilder
http://dx.doi.org/10.1038/ncomms7187 - Originalveröffentlichung: „The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering"; Nature Communications, 2015

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften