Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgen-Laser: Auf dem Weg zur Strukturbestimmung von Nanoteilchen

08.04.2013
An Freie-Elektronen-Röntgen-Lasern sollen unter anderem die Strukturen von komplexen Nanoteilchen bis hin zu Biomolekülen untersucht werden.

In einem Experiment werden die untersuchten Teilchen mit Licht aus dem Röntgen-Laser durchleuchtet und das dabei gestreute Licht detektiert. Um genügend Information zu erhalten, wird man die Messungen mehrfach wiederholen müssen.


Prinzip des beschriebenen Experiments. Ausführliche Bildlegende auf http://psi.ch/Dk61
Grafik: Paul Scherrer Institut/B. Pedrini

Forscher des PSI haben nun einen optimierten mathematischen Weg aufgezeigt, wie man aus so gewonnen Messdaten eine deutlich bessere Auflösung bei der Bestimmung der Struktur eines einzelnen Teilchens erhält als bisher. Die Methode kann nun auf echte dreidimensionale Objekte erweitert werden.

Die dreidimensionale Struktur von Teilchen im Nanometerbereich zu kennen, ist wissenschaftlich von grosser Bedeutung. Das gilt insbesondere für den Aufbau komplexer Biomoleküle, deren Kenntnis für unser Verständnis von lebenswichtigen Prozessen in Organismen genauso wichtig ist wie für die Entwicklung neuer Medikamente. Heutzutage werden solche Molekülstrukturen vornehmlich mit Synchrotronlicht, zum Beispiel an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI, untersucht. Zum Aufbau wichtiger Moleküle werden Untersuchungen an einem Freie-Elektronen-Röntgen-Laser (XFEL), wie dem am PSI im Bau befindlichen SwissFEL, genauere Informationen liefern als die, die man heute gewinnen kann.

Intensive Lichtpulse zeigen Struktur

Im Experiment zur Strukturbestimmung wird man einen Strom von Nanoteilchen, die man untersuchen will, erzeugen und mit Röntgenlichtpulsen aus dem XFEL durchleuchten. Diese Pulse werden so intensiv sein, dass die von dem einzelnen Puls beleuchteten Teilchen eine nennenswerte Menge an Licht ablenken und gleichzeitig so kurz, dass sich das einzelne Teilchen während der Belichtung nicht dreht. Doch wird die Information, die die Beleuchtung eines einzelnen Teilchens liefert, nicht reichen, um dessen Struktur zu bestimmen. Die Messung wird mehrmals mit immer wieder neuen Teilchen wiederholt werden müssen, die dabei jedes Mal anders im Raum orientiert sein werden.
Struktur von Einzelteilchen aus Streudaten vieler Teilchen

Aus der Gesamtheit der Streudaten aus aufeinanderfolgenden Messungen die Struktur eines einzelnen Teilchens zu bestimmen, ist eine grosse mathematische Herausforderung, insbesondere wenn die Zahl der Teilchen, die während der einzelnen Messungen beleuchtet wurden, unbekannt ist. Nun haben Forscher des PSI um den Physiker Bill Pedrini einen wichtigen Schritt hin zur Lösung des Problems gemacht. Sie haben ein 1977 vom israelischen Physiker Zvi Kam vorgeschlagenes Verfahren weiterentwickelt. In mathematischer Sprache ausgedrückt, berechnet man dabei die Kreuzkorrelationen der gemessenen Streuintensitäten. Diese erlauben, aus der grossen Menge an experimentellen Daten die für die Strukturbestimmung nötige Information zu extrahieren. „Für die Anwendung dieses Verfahrens ist es entscheidend, dass das einzelne untersuchte Teilchen im Mittel mindestens zwei Lichtteilchen streut, damit man auch die nötigen Korrelationen beobachten kann. Bei Anwendung der sehr intensiven Pulse eines XFEL wären diese Voraussetzungen auch für kleinere Untersuchungsobjekte erreicht“, erklärt Pedrini.

An der SLS getestet

Getestet wurde das Verfahren in einem Experiment an der cSAXS-Röntgenstrahllinie der SLS. Die Rolle der Teilchen haben hier rund 300 Nanometer grosse, identische, sternartige Testobjekte gespielt, die eigens für dieses Experiment am Labor für Mikro- und Nanotechnologie des PSI hergestellt wurden. Sie waren unregelmässig auf einer Fläche verteilt und zufällig orientiert. „Wir haben diese Proben an verschiedenen Stellen mit einem Strahl aus der SLS durchleuchtet und somit ein Experiment am Röntgenlaser simuliert, in dem bei jeder Aufnahme eine andere Konfiguration von mehreren unbewegten Teilchen beleuchtet wurde“, so Pedrini. Mit ihrem Verfahren konnten die Forschenden aus der Gesamtheit der ungefähr 4000 Streubilder die genaue Form des Nanosternchens ermitteln. „Die Rekonstruktion war möglich, ohne dass wir bei den einzelnen Aufnahmen wussten, wie viele Objekte wir im Strahl hatten. Das entspricht der Situation in einem tatsächlichen Experiment“, bemerkt Pedrini weiter.
In Zukunft in 3-D

Im nächsten Schritt soll das Verfahren auf dreidimensionale Teilchen, zum Beispiel Moleküle, verallgemeinert werden. Auch wenn jetzt schon klar ist, dass man aus prinzipiellen Gründen für eine vollständige 3-D-Strukturbestimmung auf zusätzliche Informationen angewiesen ist, etwa über die Symmetrien des Objektes, bietet die Methode wesentliche Vorteile. Insbesondere macht sie die rechnerisch einfache Auswertung grosser Mengen an Streubildern möglich. Die Testexperimente an der SLS haben zum einen bewiesen, dass das tatsächlich funktioniert. Zum anderen haben sie aber auch weitere Erkenntnisse für zukünftige XFEL-Experimente geliefert. „Wir wissen jetzt zum Beispiel, welche Effekte entstehen, wenn das Licht, das von zwei Objekten gestreut wurde, interferiert. Und wie wichtig es ist zu berücksichtigen, dass der Lichtstrahl nicht im ganzen Strahlquerschnitt gleich intensiv ist“, so Pedrini.

Weiterhin verschiedene Verfahren zur Strukturbestimmung

Trotz der intensiven Röntgenstrahlung, die ein XFEL liefern kann, wird das vorgestellte Verfahren keine „atomare Auflösung“ liefern, bei der man die Position jedes einzelnen Atoms im Molekül ermitteln kann. Diese erreicht man mit dem Verfahren der Proteinkristallografie, das seit Jahren sehr erfolgreich an der SLS eingesetzt wird. Dafür müssen zahlreiche Exemplare des Moleküls hergestellt und in einer regelmässigen dreidimensionalen Anordnung – einem Kristall – untergebracht werden. Viele wichtige Moleküle, darunter die meisten Membranproteine, können aber nicht kristallisiert werden, sodass nur Streuexperimente an Molekülen möglich sind, die in einer Flüssigkeit gelöst sind. Solche Experimente liefern heutzutage lediglich Information über die äussere Form der Moleküle. Die Kombination von Experimenten an einem XFEL mit der auf Kreuzkorrelationen beruhenden Auswertung verspricht bedeutende Fortschritte – es soll eine Auflösung von wenigen Nanometern erreicht werden, was die Identifizierung von neuen strukturellen Eigenschaften erlauben wird.

Text: Paul Piwnicki


Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Bill Pedrini, SwissFEL-Projekt, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 3371; E-Mail: bill.pedrini@psi.ch

Originalveröffentlichung:
Pedrini, B. et al. Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nat. Commun. 4:1647 (2013)

doi: 10.1038/ncomms2622; http://dx.doi.org/10.1038/ncomms2622

Weitere Informationen:
http://psi.ch/Dk61 - weitere Abbildungen
http://www.psi.ch/media/ueberblick-swissfel - Der SwissFEL im Überblick
http://www.psi.ch/swissfel/swissfel - Seite des SwissFEL-Projekts (in Englisch)

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie