Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgen-Laser: Auf dem Weg zur Strukturbestimmung von Nanoteilchen

08.04.2013
An Freie-Elektronen-Röntgen-Lasern sollen unter anderem die Strukturen von komplexen Nanoteilchen bis hin zu Biomolekülen untersucht werden.

In einem Experiment werden die untersuchten Teilchen mit Licht aus dem Röntgen-Laser durchleuchtet und das dabei gestreute Licht detektiert. Um genügend Information zu erhalten, wird man die Messungen mehrfach wiederholen müssen.


Prinzip des beschriebenen Experiments. Ausführliche Bildlegende auf http://psi.ch/Dk61
Grafik: Paul Scherrer Institut/B. Pedrini

Forscher des PSI haben nun einen optimierten mathematischen Weg aufgezeigt, wie man aus so gewonnen Messdaten eine deutlich bessere Auflösung bei der Bestimmung der Struktur eines einzelnen Teilchens erhält als bisher. Die Methode kann nun auf echte dreidimensionale Objekte erweitert werden.

Die dreidimensionale Struktur von Teilchen im Nanometerbereich zu kennen, ist wissenschaftlich von grosser Bedeutung. Das gilt insbesondere für den Aufbau komplexer Biomoleküle, deren Kenntnis für unser Verständnis von lebenswichtigen Prozessen in Organismen genauso wichtig ist wie für die Entwicklung neuer Medikamente. Heutzutage werden solche Molekülstrukturen vornehmlich mit Synchrotronlicht, zum Beispiel an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI, untersucht. Zum Aufbau wichtiger Moleküle werden Untersuchungen an einem Freie-Elektronen-Röntgen-Laser (XFEL), wie dem am PSI im Bau befindlichen SwissFEL, genauere Informationen liefern als die, die man heute gewinnen kann.

Intensive Lichtpulse zeigen Struktur

Im Experiment zur Strukturbestimmung wird man einen Strom von Nanoteilchen, die man untersuchen will, erzeugen und mit Röntgenlichtpulsen aus dem XFEL durchleuchten. Diese Pulse werden so intensiv sein, dass die von dem einzelnen Puls beleuchteten Teilchen eine nennenswerte Menge an Licht ablenken und gleichzeitig so kurz, dass sich das einzelne Teilchen während der Belichtung nicht dreht. Doch wird die Information, die die Beleuchtung eines einzelnen Teilchens liefert, nicht reichen, um dessen Struktur zu bestimmen. Die Messung wird mehrmals mit immer wieder neuen Teilchen wiederholt werden müssen, die dabei jedes Mal anders im Raum orientiert sein werden.
Struktur von Einzelteilchen aus Streudaten vieler Teilchen

Aus der Gesamtheit der Streudaten aus aufeinanderfolgenden Messungen die Struktur eines einzelnen Teilchens zu bestimmen, ist eine grosse mathematische Herausforderung, insbesondere wenn die Zahl der Teilchen, die während der einzelnen Messungen beleuchtet wurden, unbekannt ist. Nun haben Forscher des PSI um den Physiker Bill Pedrini einen wichtigen Schritt hin zur Lösung des Problems gemacht. Sie haben ein 1977 vom israelischen Physiker Zvi Kam vorgeschlagenes Verfahren weiterentwickelt. In mathematischer Sprache ausgedrückt, berechnet man dabei die Kreuzkorrelationen der gemessenen Streuintensitäten. Diese erlauben, aus der grossen Menge an experimentellen Daten die für die Strukturbestimmung nötige Information zu extrahieren. „Für die Anwendung dieses Verfahrens ist es entscheidend, dass das einzelne untersuchte Teilchen im Mittel mindestens zwei Lichtteilchen streut, damit man auch die nötigen Korrelationen beobachten kann. Bei Anwendung der sehr intensiven Pulse eines XFEL wären diese Voraussetzungen auch für kleinere Untersuchungsobjekte erreicht“, erklärt Pedrini.

An der SLS getestet

Getestet wurde das Verfahren in einem Experiment an der cSAXS-Röntgenstrahllinie der SLS. Die Rolle der Teilchen haben hier rund 300 Nanometer grosse, identische, sternartige Testobjekte gespielt, die eigens für dieses Experiment am Labor für Mikro- und Nanotechnologie des PSI hergestellt wurden. Sie waren unregelmässig auf einer Fläche verteilt und zufällig orientiert. „Wir haben diese Proben an verschiedenen Stellen mit einem Strahl aus der SLS durchleuchtet und somit ein Experiment am Röntgenlaser simuliert, in dem bei jeder Aufnahme eine andere Konfiguration von mehreren unbewegten Teilchen beleuchtet wurde“, so Pedrini. Mit ihrem Verfahren konnten die Forschenden aus der Gesamtheit der ungefähr 4000 Streubilder die genaue Form des Nanosternchens ermitteln. „Die Rekonstruktion war möglich, ohne dass wir bei den einzelnen Aufnahmen wussten, wie viele Objekte wir im Strahl hatten. Das entspricht der Situation in einem tatsächlichen Experiment“, bemerkt Pedrini weiter.
In Zukunft in 3-D

Im nächsten Schritt soll das Verfahren auf dreidimensionale Teilchen, zum Beispiel Moleküle, verallgemeinert werden. Auch wenn jetzt schon klar ist, dass man aus prinzipiellen Gründen für eine vollständige 3-D-Strukturbestimmung auf zusätzliche Informationen angewiesen ist, etwa über die Symmetrien des Objektes, bietet die Methode wesentliche Vorteile. Insbesondere macht sie die rechnerisch einfache Auswertung grosser Mengen an Streubildern möglich. Die Testexperimente an der SLS haben zum einen bewiesen, dass das tatsächlich funktioniert. Zum anderen haben sie aber auch weitere Erkenntnisse für zukünftige XFEL-Experimente geliefert. „Wir wissen jetzt zum Beispiel, welche Effekte entstehen, wenn das Licht, das von zwei Objekten gestreut wurde, interferiert. Und wie wichtig es ist zu berücksichtigen, dass der Lichtstrahl nicht im ganzen Strahlquerschnitt gleich intensiv ist“, so Pedrini.

Weiterhin verschiedene Verfahren zur Strukturbestimmung

Trotz der intensiven Röntgenstrahlung, die ein XFEL liefern kann, wird das vorgestellte Verfahren keine „atomare Auflösung“ liefern, bei der man die Position jedes einzelnen Atoms im Molekül ermitteln kann. Diese erreicht man mit dem Verfahren der Proteinkristallografie, das seit Jahren sehr erfolgreich an der SLS eingesetzt wird. Dafür müssen zahlreiche Exemplare des Moleküls hergestellt und in einer regelmässigen dreidimensionalen Anordnung – einem Kristall – untergebracht werden. Viele wichtige Moleküle, darunter die meisten Membranproteine, können aber nicht kristallisiert werden, sodass nur Streuexperimente an Molekülen möglich sind, die in einer Flüssigkeit gelöst sind. Solche Experimente liefern heutzutage lediglich Information über die äussere Form der Moleküle. Die Kombination von Experimenten an einem XFEL mit der auf Kreuzkorrelationen beruhenden Auswertung verspricht bedeutende Fortschritte – es soll eine Auflösung von wenigen Nanometern erreicht werden, was die Identifizierung von neuen strukturellen Eigenschaften erlauben wird.

Text: Paul Piwnicki


Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Bill Pedrini, SwissFEL-Projekt, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 3371; E-Mail: bill.pedrini@psi.ch

Originalveröffentlichung:
Pedrini, B. et al. Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nat. Commun. 4:1647 (2013)

doi: 10.1038/ncomms2622; http://dx.doi.org/10.1038/ncomms2622

Weitere Informationen:
http://psi.ch/Dk61 - weitere Abbildungen
http://www.psi.ch/media/ueberblick-swissfel - Der SwissFEL im Überblick
http://www.psi.ch/swissfel/swissfel - Seite des SwissFEL-Projekts (in Englisch)

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie