Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ringelreihen in der OLED: Wenn Elektronen Händchen halten

08.09.2015

„Spin-Dicke Effekt“ erstmals sichtbar gemacht

OLEDs haben die Displaytechnik revolutioniert und finden sich heute in vielen Smartphones. Ein internationales Forscherteam der Universitäten in Regensburg, Salt Lake City und Queensland konnte nun zeigen, welches Potential OLEDs auch in der wissenschaftlichen Grundlagenforschung haben.


Der Spin-Dicke Effekt in einer OLED: Die Bestrahlung einer OLED im Magnetfeld führt bei einer bestimmten Magnetfeldstärke zu einer positiven Änderung des Stroms (rot): eine Resonanz entsteht. Bei erhöhter Strahlungsintensität spaltet sich die Resonanz in zwei Äste auf: der sogenannte AC-Zeeman Effekt. Bei einer kritischen Intensität verschwindet die Resonanz und das Vorzeichen der Stromänderung kehrt sich um (blau) – der „Spin-Dicke Effekt“ tritt ein, bei dem sich alle Elektronen gleich verhalten.

Nachweis: P. Klemm/D. Waters

Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung

Erstmals wurden zwei bislang nur theoretisch vorhergesagte Phänomene der Quantenphysik experimentell aufgezeigt: der „AC-Zeeman Effekt“ und der „Spin-Dicke Effekt“. Dabei werden die Elektronen in einer OLED unter Einstrahlung von Radiowellen quasi gleichgeschaltet, sodass sich ein neuartiger kollektiver Zustand ausbildet.

Die Elementarladung einer OLED, das Elektron, verhält sich wie ein kleiner Stabmagnet. Richten sich viele dieser Stabmagnete zusammen in die gleiche Richtung aus, so spricht man von Magnetismus. Diese magnetische Eigenschaft der Elektronen bezeichnet man als „Spin“.

Wird eine OLED in einem Magnetfeld mit elektromagnetischen Radiowellen bestrahlt, führt dies bei einer bestimmten Magnetfeldstärke zu einer positiven Änderung des Stroms: eine Resonanz entsteht, vergleichbar einer schwingenden Gitarrensaite.

Dies ist das Grundprinzip der Magnetresonanz, das beispielsweise dem Kernspintomographen zugrunde liegt. Wichtig ist dabei, dass die Resonanzbedingung von der Frequenz der Radiowelle gegeben wird, und nicht von der Intensität der Strahlung. Auch dies kennt man von der Gitarrensaite: der Ton ändert sich nicht mit der Kraft, mit der man die Saite zupft, sondern nur die Lautstärke.

OLEDs eignen sich bestens, um solche Resonanzphänomene zu untersuchen. So konnten die Forscher nun erkunden, was passiert, wenn die Intensität der elektromagnetischen Strahlung derart erhöht wird, dass die Spins buchstäblich nicht mehr wissen, wo oben und unten ist. Zunächst spaltet sich die Resonanz in zwei Frequenzen auf: der sogenannte „AC-Zeeman Effekt“.

Bei einer kritischen Intensität allerdings fangen alle Spins an, sich gleichzeitig in dieselbe Richtung zu drehen, sie sind quasi geordnet: Die Elektronen tanzen Ringelreihen, was sich im Strom der OLED auswirkt und die Resonanz dramatisch verändert. Vergleichen lässt sich dieses Geschehen mit den vielen Instrumenten eines Symphonieorchesters: Eben noch hat jeder Musiker sein Instrument gestimmt, man hört nur ein wirres Durcheinander.

Doch mit Einsatz des Taktstocks – in diesem Fall in Form der Radiowellen – erklingt schlagartig ein harmonisches Ensemble. Dieser „Spin-Dicke Effekt“ wurde schon lange vorausgesagt und konnte nun erstmals in der OLED sichtbar gemacht werden.

Mit dem experimentellen Zugang zu diesen beiden Quantenphänomenen erhoffen sich die Forscher die Entwicklung neuartiger hochempfindlicher Magnetfeldsensoren, die mit den Vorzügen der einfachen Verarbeitung von OLEDs aufwarten.

Die Ergebnisse des Forschungsteams der Universität Regensburg (Prof. Dr. John Lupton), der University of Utah (Prof. Dr. Christoph Boehme) und der University of Queensland (Prof. Dr. Paul Burn) wurden in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht (DOI: 10.1038/nphys3453).

Original-Titel der Publikation:
The Spin-Dicke Effect in OLED Magnetoresistance, Fachjournal „Nature Physics“

Der Artikel im Netz unter:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphysXXXX.html


Ansprechpartner für Medienvertreter:
Prof. Dr. John Lupton
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Kontakt per E-Mail: John.Lupton@ur.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics