Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenstern mit dicker Staubscheibe

27.01.2011
Neue 3D-Bildtechnik enthüllt das Geschwindigkeitsfeld einer alten Sonne – und einen unsichtbaren Begleiter

Ein Überriese steht am Abgrund des Todes – und verhält sich wie ein Junger. Zumindest ist der alte Stern von einer Staubscheibe umgeben, wie man sie sonst nur bei einem neugeborenen erwarten würde. Warum?


Ein Stern in allen Dimensionen: 3D-Bilder von HD 62623, aufgenommen mit dem VLT-Interferometer (links) im Vergleich mit einem Modell für eine rotierende Gasscheibe um den Stern (rechts). Die Insert-Bilder verdeutlichen die Gaskinematik, also die dritte Dimension in Ergänzung von Länge und Breite. Die blaue Farbe zeigt Gas, das sich auf den Beobachter zu bewegt, die rote Farbe Gas, das sich vom Beobachter entfernt. Der Radius des inneren Gasrings von etwa zwei Millibogensekunden entspricht ungefähr dem 1,3-fachen Abstand zwischen Erde und Sonne (1,3 AE); der im Bild sichtbare äußere Staubring hat einen Radius von rund vier AE. Der Stern HD 62623 ist 2100 Lichtjahre von der Erde entfernt. © Florentin Millour et al.


Die vier Kuppeln der 1,8-Meter-Teleskope (ATs) der Europäischen Südsternwarte auf dem Cerro Paranal in Chile. Drei von ihnen wurden für die hier beschriebenen VLTI-Beobachtungen mittels Amber zu einem Interferometer verbunden. © Florentin Millour, OCA, Nice, France

Ein Team um Florentin Millour vom Observatoire de la Côte d'Azur und Anthony Meilland vom Max-Planck-Institut für Radioastronomie hat jetzt ein detailliertes dreidimensionales Bild dieses Sterns und seiner unmittelbaren Umgebung gewonnen. Die Forscher vermuten, dass des Rätsels Lösung in der Existenz eines nicht direkt sichtbaren Begleitsterns liegt. Für ihre Beobachtungen haben sie Abbildungstechniken genutzt, wie sie bisher nur in der Radioastronomie zur Analyse interferometrischer Daten zur Anwendung gekommen sind. (Astronomy & Astrophysics, 26. Januar 2011)

Der heiße Überriese HD 62623 ist ein exotisches Objekt. Im Unterschied zu seinem Zwilling Deneb im Sternbild Schwan – er gehört derselben Spektralklasse an und bildet zusammen mit Wega und Atair das bekannte Sommerdreieck am Nordhimmel –, wird HD 62623 von einer dichten und komplex aufgebauten Scheibe aus Plasma und Staub umgeben. Bei heißen Überriesen handelt es sich um sehr leuchtkräftige Sonnen. Ihre Strahlung ist so intensiv, dass die energiereichen Photonen einen starken Sternwind hervorrufen. Ein solcher Sternwind würde jedoch verhindern, dass sich in der Nachbarschaft des Sterns eine Staubscheibe formt. Wie also kann sie existieren?

Um die Prozesse besser zu verstehen, durch die Staub in der unwirtlichen Umgebung überhaupt entstehen kann, ist es unbedingt erforderlich, nicht nur die geometrische Anordnung von Gas und Staub nahe der Zentralquelle zu entflechten, sondern auch deren Bewegungen (Kinematik).

„Mithilfe unserer Interferometrie-Beobachtungen haben wir ein dreidimensionales Bild von HD 62623 gewonnen, dessen Auflösung der eines virtuellen 130-Meter-Teleskops entspricht“, sagt Florentin Millour, Erstautor der Studie. „Diese Auflösung ist um eine Größenordnung höher als jene, die sich an den derzeit größten optischen Fernrohren mit Spiegeldurchmessern von acht bis zehn Metern erzielen lässt.“

Die Forscher arbeiteten mit einem System namens Amber, das am Very Large Telescope Interferometer (VLTI) in Chile eingesetzt wird. Sie konnten die Qualität ihrer Daten entscheidend verbessern, indem sie eine aus der Radioastronomie bekannte Analysetechnik nutzten, die sogenannte Selbstkalibrations-Methode. Die daraus erhaltenen Bilder vereinen räumliche Information mit Geschwindigkeitsinformation und spannen über zwei räumliche und eine Geschwindigkeitskoordinate ein dreidimensionales Bild auf. Damit zeigen die Aufnahmen nicht nur die Struktur der Materie in der unmittelbaren Umgebung des Sterns, sondern auch deren Bewegung. Diese kinematische Information hat in den Daten bisher gefehlt.

„Unser neues 3D-Bild lokalisiert den Bereich der Staubbildung in der unmittelbaren Umgebung von HD 62623 mit hoher Genauigkeit und zeigt außerdem die Rotation des Gases um den Zentralstern“, sagt Anthony Meilland. „Diese Rotation folgt den Keplerschen Gesetzen – ganz analog zur Bewegung der Planeten um die Sonne.“ Die Ursache für die rotierende Gasscheibe ist mit hoher Wahrscheinlichkeit ein naher Begleitstern mit ungefähr derselben Masse wie die Sonne.

Wegen seiner mehr als tausendfach geringeren Leuchtkraft gegenüber HD 62623 lässt sich ein solcher Begleiter nicht direkt nachweisen; seine Existenz verrät sich aber durch die Materielücke zwischen Gasscheibe und zentralem Stern. Mit einem solchen Begleiter wären die exotischen Eigenschaften von HD 62623 gut zu erklären. In unserer Milchstraße gibt es bereits einen ähnlichen Fall: den von einem komplexen Nebel umgebenen alten Monsterstern Eta Carinae am südlichen Firmament.

Die neue 3D-Bildtechnik entspricht der bekannten Integralfeld-Spektroskopie. Im Gegensatz dazu ermöglicht sie jedoch eine 15-fach höhere Winkelauflösung, die der Auffindung von detaillierten Strukturen in den Bildern zugute kommt. Die Integralfeld-Spektroskopie erlaubt es, aus jedem Pixel Informationen über die Natur des Gases und die dort herrschenden Geschwindigkeiten herauszulesen. Außerdem messen die Astronomen zusätzlich für jeden Punkt in dem Bild auch die Geschwindigkeit entlang der Sehlinie auf uns zu oder von uns weg.

„Mit dieser Leistungsfähigkeit erlaubt VLTI die Beobachtung einer ganzen Reihe von Himmelsobjekten, die so kompakt sind, dass sie auch von den größten Einzelteleskopen nicht mehr aufgelöst werden können“, sagt Florentin Millour. „Damit können wir die Untersuchung von Scheiben oder Jets bei jungen Sternen angehen, oder auch die Zentralregionen aktiver Galaxien ins Visier nehmen.“

Das Very Large Telescope Interferometer (VLTI) der Europäischen Südsternwarte (ESO) auf dem Cerro Paranal in Chile umfasst eine Reihe von Teleskopen: vier von je 8,2 Meter Durchmesser (UTs) und vier von je 1,8 Meter Durchmesser (ATs). Der Astronomical Multi-BEam Recombiner (Amber) ist eines der Wissenschaftsinstrumente am VLTI – ein interferometrisches Instrument, das die Strahlen von drei Einzelteleskopen miteinander verbindet und im nahinfraroten Spektralbereich zwischen einem und 2,5 Mikrometer arbeitet. Es wurde gebaut in Zusammenarbeit zwischen dem Laboratoire d'Astrophysique de Grenoble, dem Laboratoire d'Astrophysique Universitaire de Nice und dem Observatoire de la Côte d'Azur, weiterhin dem Observatorio Astrofisico di Arcetri (Florenz) und dem Max-Planck-Institut für Radioastronomie (Bonn).

Dr. Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1051794/Riesenstern_Staubscheibe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften