Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Richtungsweisende Molekülachse unter Elektronenbeschuss

24.09.2012
Forscher am MPI für Kernphysik konnten erstmals eine starke Abhängigkeit der Elektronenstoßionisation von Wasserstoffmolekülen von deren räumlicher Ausrichtung beobachten.
Die Ausrichtung der gasförmig vorliegenden Moleküle wurde nach dem Stoß anhand der Flugrichtung molekularer Bruchstücke bestimmt. Offenbar wird das aus dem Molekül herausgeschlagene Elektron durch die positiven Atomkerne stark abgelenkt und vorzugsweise entlang der Molekülachse emittiert. (Phys. Rev. Lett., 19.09.2012 online)

Auf welche Weise Atome und Moleküle im Stoß mit Elektronen ionisiert werden hat wichtige Konsequenzen für das Verhalten von vielen physikalischen Systemen, von Gasentladungen in Lampen und Lasern bis zu astrophysikalischen Plasmen. Im Experiment kann man auf den genauen Ablauf von Stößen zwischen Elektronen und Molekülen durch die Messung der Impulse aller beteiligten Teilchen vor und nach dem Stoß schließen. Doch welchen Einfluss hat hier die räumliche Ausrichtung eines Gasmoleküls? Dies wurde bisher unter Physikern sogar beim molekularen Wasserstoff H2, dem einfachsten aller Moleküle, kontrovers diskutiert [1]. Die experimentelle Bestimmung der zufällig orientierten Achse eines Gasmoleküls ist jedoch schwierig.
Vor kurzem gelang dies Heidelberger Physikern bei der Ionisation von Wasserstoffmolekülen, indem sie molekulare Bruchstücke nachwiesen und aus deren Flugrichtung auf die räumliche Ausrichtung des anfänglich intakten Moleküls schlossen. Es zeigte sich jedoch, dass die Molekülachse bei den meisten Stößen keine große Rolle spielt. Dies liegt daran, dass sich die Elektronenhülle im Wasserstoffmolekül über einen, verglichen mit dem Kernabstand, sehr großen Raumbereich ausdehnt und fast kugelförmig ist.

In den jüngsten Experimenten gelang es den Forschern jedoch große Streuwinkel des Projektils zu beobachten, bei denen der Stoß mit dem molekularen Elektron sehr nahe an einem Atomkern stattfindet. Dabei werden die herausgeschlagenen Elektronen beim Verlassen des Moleküls durch die positiven Kerne stark abgelenkt und mit größerer Wahrscheinlichkeit entlang der Molekülachse emittiert. Dieser Effekt wird umso stärker, je langsamer das auslaufende Elektron ist. Mit dieser Messung konnte der Ursprung der Winkelverteilung der ionisierten Elektronen, die bisher nur an zufällig ausgerichteten Molekülen gemessenen wurde [2], erstmals aufgeklärt werden.

In Zukunft wird die hier entwickelte experimentelle Technik auch die Untersuchung größerer, auch biologisch relevanter Moleküle ermöglichen und damit zum Verständnis der Entstehung von Strahlenschäden in biologischem Gewebe beitragen.

[1] Al-Hagan et al., Nature Physics 5 , 59 (2009).

[2] A. Senftleben, O. Al-Hagan, T. Pflüger, X. Ren, D. Madison, A. Dorn and J. Ullrich, J. Chem. Phys. 133, 044302 (2010).

Originalveröffentlichung:
Strong Molecular Alignment Dependence of H2 Electron Impact Ionization Dynamics, X. Ren, T. Pflüger, S. Xu, J. Colgan, M. S. Pindzola, A. Senftleben, J. Ullrich and A. Dorn, Phys. Rev. Lett. 109, 123202 (2012).

Kontakt:
PD Dr. Alexander Dorn
Tel.: +49 6221 516-513
E-Mail: alexander.dorn at mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v109/i12/e123202
http://www.mpi-hd.mpg.de/ullrich/page.php?id=37

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten