Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Richtung kommt es an!

01.09.2011
In der Halbleiterphysik gelten ab sofort neue Verkehrsregeln: Elektronen in Halbleitern lassen sich entlang ihrer Bewegungsrichtung nicht so leicht beschleunigen wie quer dazu.

Das postulieren Marburger Physiker, die mit einer neuen Theorie verblüffende experimentelle Daten erklären können. Das Team um Professor Dr. Stephan W. Koch von der Philipps-Universität veröffentlicht seine Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift „Physical Review Letters“, die am kommenden Freitag, den 2. September 2011 erscheint.


"Experimenteller Clou": Die richtungsabhängige Messung der effektiven Massen in schematischer Darstellung. Die Krümmung der gelben Fläche ist ein Maß für die effektive Masse in der jeweiligen Richtung. Im Experiment beschleunigt ein Terahertz-Puls die Elektronen (roter Punkt), bevor der „probe pulse“ die effektive Masse misst – entweder parallel zur Bewegungsrichtung (entlang der roten Linie) oder senkrecht dazu (entlang der blauen Linie). Die unterschiedliche Krümmung der beiden Linien spiegelt die Anisotropie der Massen wider. Abbildung: Philipps-Universität / AG Koch

Elektronen im Halbleiter haben eine im Vergleich zu freien Elektronen veränderte Masse. Diese sogenannte „effektive Masse“ resultiert aus der quantenmechanischen Wechselwirkung der Elektronen mit den Gitteratomen, die den Kristall aufbauen. Sie hängt von der Geschwindigkeit der Elektronen ab, genauer: vom Impuls. „Ein sich schnell bewegendes Elektron hat im Halbleiter eine andere Masse als ein langsameres“, erklärt Mitautor Koch. „Die effektive Masse kann sogar davon abhängig sein, in welche Richtung sich das Elektron durch den Halbleiter bewegt – wie ein Gegenstand, der schwerer ist, wenn er nach Norden fliegt, als wenn er sich nach Osten bewegt!“ Man spricht in diesem Fall von „Anisotropie“.

Die genaue Kenntnis der effektiven Masse für alle Geschwindigkeiten und Richtungen ist essentiell für das Verständnis der elektronischen und optischen Eigenschaften von Halbleitern. Die aktuelle Veröffentlichung fußt auf einer erstaunlichen Entdeckung kanadischer Physiker: Die Wissenschaftler um Professor Dr. Frank Hegmann von der University of Alberta hatten sich ein besonders raffiniertes Experiment ausgedacht, um die Richtungsabhängigkeit der effektiven Masse für verschiedene Geschwindigkeiten direkt zu beobachten.

Sie bedienten sich hierzu der Terahertz (THz)-Strahlung, einer unsichtbaren elektromagnetischen Strahlung im Wellenlängenbereich zwischen infrarotem Licht und Mikrowellen. Herzstück des kanadischen Versuchs sind zwei aufeinanderfolgende THz-Pulse, deren Polarisationen (die Richtungen der zugehörigen elektrischen Felder) relativ zueinander gedreht werden können. Ein erster starker Puls, der sogenannte Pump-Puls, beschleunigt die Elektronen im Halbleiter auf eine gewisse Geschwindigkeit.

Der zweite, schwächere Abfrage-Puls kann nun die Masse der zuvor beschleunigten Elektronen messen. Dabei macht man sich einen alltäglichen Effekt zunutze: leichte Gegenstände lassen sich aufgrund der geringeren Trägheit leichter bewegen als schwere. Ebenso reagieren leichte Elektronen stärker als schwere auf das THz-Feld. Misst man nun das Feld des durch den Halbleiter hindurch gelaufenen Abfrage-Pulses, so lassen sich Rückschlüsse auf die Masse der Elektronen ziehen. „Der eigentliche Clou an diesem Experiment ist jedoch, dass es eine richtungsabhängige Messung der Massen erlaubt, da die Polarisationen von Pump- und Abfrage-Puls gegeneinander gedreht werden können“, erläutert Mitautor Daniel Golde.

Die kanadischen Wissenschaftler machten die unerwartete Beobachtung, dass die Masse der sich bewegenden Elektronen in Bewegungsrichtung größer ist als senkrecht dazu. Mit anderen Worten, es ist leichter, die Elektronen seitlich abzulenken als sie noch weiter in Bewegungsrichtung zu beschleunigen oder abzubremsen.

Koch sowie seine Marburger Kollegen Professor Dr. Mackillo Kira und Dr. Daniel Golde konnten mit ihrer Theorie eindeutig nachweisen, dass die gemessenen Ergebnisse sich auf eine bisher noch nicht beobachtete Art der Anisotropie zurückführen lassen, die nur dann auftritt, wenn die Elektronen zuvor beschleunigt wurden (wie in diesem Fall durch die Terahertzbestrahlung). Wie die Forscher weiter zeigen konnten, ist dieser Effekt die Folge einer allgemeinen geometrischen Eigenschaft des Elektronensystems; es tritt somit in nahezu allen Halbleitern auf, selbst in vollkommen isotropen, also symmetrischen Materialien. Die Ergebnisse wurden am heutigen Mittwoch, den 31. August 2011 vorab in der Online-Ausgabe der Physical Review Letters veröffentlicht.

Originalpublikation: F. Blanchard & al.: Effective mass anisotropy of hot electrons in nonparabolic conduction bands, Phys. Rev. Letters 107/10,

2. September 2011

Weitere Informationen:
Ansprechpartner: Professor Dr. Stephan W. Koch,
Fachgebiet Theoretische Halbleiterphysik
Tel.: 06421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de

Weitere Berichte zu: Abfrage-Puls Bewegungsrichtung Elektron Halbleiter Physik Polarisationen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie