Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


First Report of Real-Time Manipulation and Control of Nuclear Spin Noise

Basel Physicists in collaboration with Dutch researchers have demonstrated a new method for polarizing nuclear spins in extremely small samples.

By Monitoring and controlling spin fluctuations, the method may provide a route for enhancing the resolution of magnetic resonance imaging (MRI) on the nanometer-scale, allowing researchers to make 3D images of smaller objects than ever before. The results have been published in the journal «Nature Physics».

Many of the elements that make up the matter around us, such as hydrogen or phosphorus, contain a magnetic nucleus at the center of each atom. This nucleus acts like a tiny magnet with a north and south pole. By applying a large magnetic field, the poles of these nuclei align along the magnetic field, producing a so-called nuclear spin polarization.

When the nuclei are irradiated with electromagnetic impulses (radio waves) at a very specific frequency, they change their direction away from the magnetic field. Because they are magnetic, the nuclei then start turning back. As they do so, they emit the energy they had previously absorbed through the radio waves. With a special antenna these signals can be detected.

This method is called nuclear magnetic resonance (NMR) and can provide very useful information about a sample, such as its chemical composition or structure. The method also forms the basis of magnetic resonance imaging (MRI), which can make 3D images of the density of an object and is often used on patients in hospitals.

However, for very small objects (i.e. smaller than a single cell) containing a small number of nuclei, the natural fluctuations of the nuclear spin polarization actually become larger than the polarization produced by a large magnetic field. These deviations are known as «spin noise». The fact that spin noise is so dominant at small scales is one of the reasons why measuring NMR and MRI in very small objects is so difficult.

Monitoring, controlling and capturing
The team led by Prof. Martino Poggio from the University of Basel in Switzerland has now demonstrated, together with scientists from Eindhoven University of Technology and Delft University of Technology in the Netherlands, a method for creating polarization order from such random fluctuations. By monitoring, controlling, and capturing statistical spin fluctuations, the team produced polarizations that were much larger than what can be created by applying a magnetic field.

This is the first report of the real-time manipulation, control, and capture of fluctuations arising from nuclear spin noise. The results are immediately relevant to recent technical advances that have dramatically reduced the possible detection volumes of NMR measurements. «Improved understanding of these phenomena may lead to new high resolution nano- and atomic-scale imaging techniques», explains Poggio, Argovia Nanotechnology Professor at the Swiss Nanoscience Institute. The Basel method may provide a route for enhancing the sensitivity of nanometer-scale magnetic resonance imaging (MRI) or possibly for the implementation of solid-state quantum computers.

Further Implications
The method’s ability to reduce nuclear spin polarization fluctuations may also be useful to enhance the coherence time of solid-state qubits. Qubits are units of quantum information used in quantum computers. Qubits implemented in the solid-state – especially in structures called quantum dots – are very susceptible to fluctuations in nuclear polarization: even tiny variations in the nuclear polarization destroy a qubit’s coherence. Therefore, the ability to control these fluctuations may extend qubit coherence times and thus help in the on-going development of solid-state quantum computers. Poggio points out that his «approach to capture and store spin fluctuations is generally applicable to any technique capable of detecting and addressing nanometer-scale volumes of nuclear spins in real-time».

The study was supported by the Canton Aargau, the Swiss National Science Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the National Center of Competence in Research for Quantum Science and Technology (QSIT).

Original Citation
P. Peddibhotla, F. Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers, M. Poggio
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Nature Physics (2013) | doi: 10.1038/nphys2731
Further Information
Prof. Martino Poggio, University of Basel, Department of Physics, Tel: +41 61 267 37 61, Mob: +41 79 452 81 97, E-Mail:

Christoph Dieffenbacher | Universität Basel
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher des Fraunhofer FHR begleiten Wiedereintritt der chinesischen Raumstation Tiangong-1

Die chinesische Raumstation Tiangong-1 wird in wenigen Wochen in die Erdatmosphäre eintreten und zu einem großen Teil verglühen. Dabei können auch Trümmerteile den Erdboden erreichen. Tiangong-1 kreist unkontrolliert und mit ca. 29 000 km/h um die Erde. Die Wiedereintrittsprognose kann derzeit nur im Bereich von mehreren Tagen angegeben werden. Die Wissenschaftler des Fraunhofer FHR in Wachtberg bei Bonn beobachten Tiangong-1 bereits seit Wochen mit ihrem TIRA (Tracking and Imaging Radar) System, einem der leistungsfähigsten Radare zur Weltraumbeobachtung weltweit, um das nationale Weltraumlagezentrum und die ESA mit ihrer Expertise bei den Wiedereintrittsprognosen zu unterstützen.

Nach Verlust des Funkkontakts mit Tiangong-1 im Jahr 2016 ist es aufgrund der niedrigen Bahnhöhe unausweichlich, dass die chinesische Raumstation in die...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: „OLED Licht Forum" – zentraler Ansprechpartner für die Lichtquelle OLED

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, Forschungs- und Entwicklungsanbieter für OLED-Beleuchtungslösungen, ist seit 19. März 2018 Teil des neu gegründeten „OLED Licht Forums“ und präsentiert auf der light+building vom 18. – 23. März 2018, in Frankfurt a.M., in Halle 4.0 am Stand Nr. F91, neue OLED-Design- und Beleuchtungslösungen.

Sie vereint die große Leidenschaft für die OLED-Beleuchtung (organische Leuchtdioden) mit all ihren Facetten und Anwendungsmöglichkeiten. Daher haben sich...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Hybrid-elektrisch angetriebene Verkehrsflugzeuge – Zukunft oder Fiktion?

20.03.2018 | Veranstaltungen

Konferenz zur virtuellen Realität kommt nach Reutlingen

19.03.2018 | Veranstaltungen

Veranstaltungen zur Digitalisierung in der Weiterbildung

19.03.2018 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Auf der Suche nach dem Ursprung von Planetenatmosphären

21.03.2018 | Physik Astronomie

Mit Letermovir lebensbedrohlichen Cytomegalievirus-Infektionen vorbeugen

21.03.2018 | Medizin Gesundheit

Biokraftstoffe: EU-Projekt BioMates gewinnt an Fahrt

21.03.2018 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics