Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Relativität erschüttert einen Magneten

04.03.2014

Forscher der Johannes Gutenberg-Universität Mainz entwickeln neues Verfahren zur magnetischen Aufzeichnung / Veröffentlichung in Nature Nanotechnology

Die Forschungsgruppe von Univ.-Prof. Dr. Jairo Sinova am Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU) hat in Zusammenarbeit mit Wissenschaftlern aus Prag, Cambridge und Nottingham ein neuartiges physikalisches Phänomen vorhergesagt und entdeckt, das es ermöglicht, den Zustand eines Magneten durch elektrische Impulse zu beeinflussen.


Elektrisch erschütterter GaMnAs-Magnet

(Abb./©: Jairo Sinova)

Die aktuellen Technologien zur Aufzeichnung, Speicherung und Wiedergabe von Informationen sind entweder ladungs- oder spinbasiert. Dabei stellen die auf der Halbleitertechnik basierenden Flash- oder Direktzugriffsspeicher Paradebeispiele aus der großen Vielfalt ladungsbasierter Geräte dar.

Diese Geräte nutzen die Möglichkeit, die aus den Werten „0“ und „1“ bestehenden elektronischen Ladezustände von Halbleitern auf einfache Weise elektrisch zu beeinflussen und zu erfassen. Der Nachteil hierbei liegt darin, dass bereits schwache Störeinflüsse wie Verunreinigungen, Temperaturschwankungen oder Strahlung zu unkontrollierten Ladungsumverteilungen und in der Folge zu Datenverlust führen können. Spinbasierte Verfahren arbeiten nach einem völlig anderen Prinzip.

Bei manchen Materialien, wie etwa Eisen, erzeugen die Elektronenspins Magnetismus, wodurch die Position des Nord- und Südpols am Magneten zur Speicherung der 0- und 1-Werte genutzt werden kann. Genau diese Technologie steckt hinter Speicheranwendungen, die von Kilobyte-Magnetstreifenkarten bis zu Terabyte-Computerfestplatten reichen. Da in diesen Medien die Speicherung spinbasiert erfolgt, sind sie weit weniger anfällig für Ladestörungen.

Der Nachteil der derzeit existierenden Magnetspeicher besteht allerdings darin, dass das magnetische Bit an einen Elektro- oder anderen Permanentmagneten gekoppelt sein muss, um Nord- und Südpol des Magneten miteinander zu vertauschen, um also von „0“ auf „1“ zu wechseln und umgekehrt.

Wenn die Pole aber nun durch ein elektrisches Signal ohne den Einsatz eines anderen Magneten vertauscht werden könnten, wäre der Weg frei für eine völlig neuartige Generation von Speichermedien, die die Vorzüge der ladungsbasierten und der spinbasierten Medien ineinander vereint.

oder anderen Permanentmagneten auf elektrischem Wege zu erschüttern, muss man den Bereich der klassischen Physik verlassen und sich in die relativistische Quantenmechanik hineinbegeben. In Einsteins Relativitätstheorie können Elektronen unter dem Einfluss elektrischen Stroms ihre Spins so ausrichten, dass sie magnetisch werden.

Die Mainzer Forscher verwendeten einen GaMnAs-Permanentmagneten, legten in dessen Innerem einen elektrischen Strom an und erzeugten so eine neue interne Magnetwolke, durch die der sie umgebende Permanentmagnet beeinflusst werden kann. Die Arbeit wurde in der Ausgabe der Zeitschrift Nature Nanotechnology vom 2. März 2014 veröffentlicht.

Das beobachtete Phänomen ist eng mit dem relativistischen intrinsischen Spin-Hall-Effekt verwandt, den Jörg Wunderlich, Jairo Sinova und Tomas Jungwirth im Jahr 2004 entdeckten, nachdem er von Sinova und Forscherkollegen 2003 vorhergesagt worden war. Seitdem lässt sich anhand dieses Phänomens lehrbuchmäßig erläutern, wie jedes Material durch elektrische Ströme magnetisiert werden kann. „Vor zehn Jahren haben wir vorhergesagt und entdeckt, wie elektrische Ströme durch die intrinsischen Strukturen von Materialien reine Spinströme erzeugen können.

Nun haben wir nachgewiesen, dass dieser Effekt umgekehrt werden kann, um Magnete mithilfe einer strominduzierten Polarisation zu beeinflussen“, erklärt Univ.-Prof. Dr. Jairo Sinova. „Diese neuartigen Phänomene bilden heute einen wichtigen Forschungsschwerpunkt, da sich daraus eine neue Generation von Speichermedien ergeben könnte. Neben unseren laufenden Kooperationen fügt sich diese Forschungsrichtung hervorragend in die aktuelle experimentelle Forschung an der Johannes Gutenberg-Universität Mainz ein. Es ist für mich ein großes Privileg, Teil dieser weltweit führenden Forschung zu sein und mit herausragenden Kollegen zusammenarbeiten zu dürfen. Ich bin schon jetzt ganz begeistert von den Möglichkeiten, die uns die Zukunft in diesem Bereich bietet.“

Veröffentlichung:
Kurebayashi, H., Sinova, J. et al.
An antidumping spin–orbit torque originating from the Berry curvature
Nature Nanotechnology, 2. März 2014
DOI: 10.1038/nnano.2014.15

Abbildung:
http://www.uni-mainz.de/bilder_presse/08_physik_GaMnAs_magnet.jpg
Elektrisch erschütterter GaMnAs-Magnet
(Quelle/©: Jairo Sinova)

Weitere Informationen:
Univ.-Prof. Dr. Jairo Sinova
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel.: +49 6131 39-21284
E-Mail: sinova@uni-mainz.de
www.sinova-group.physik.uni-mainz.de/

Weitere Informationen:

http://www.uni-mainz.de/presse/59624.php - Pressemitteilung

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie