Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rechnung nicht ohne den Boten machen – Simulationen helfen protonierte Wassercluster zu vermessen

24.08.2010
Wassercluster bezeichnen Wassermoleküle, die sich kurzfristig zu größeren Molekülverbänden zusammenschließen. Diese Wassercluster können weitere positiv geladene Protonen aufnehmen und kommen dann als sogenannte protonierte Wassercluster auch etwa als funktionelle Gruppen in Proteinen vor. Mit Hilfe der Infrarotsprektroskopie lassen sich Bindungsstärke, die molekulare Geometrie und andere Eigenschaften protonierter Wassercluster bestimmen. Für die Messung der Schwingungsspektren sind Botenmoleküle nötig.

Ein Forscherteam um den LMU-Physiker Dr. Gerald Mathias und Professor Dominik Marx von der Ruhr-Universität Bochum, konnte nun erstmals nachweisen, wie diese Strukturen die Zuweisung der spektralen Banden bei der Infrarotspektroskopie beeinflussen. „Unsere Ergebnisse könnten dazu beitragen, solche Messungen besser zu verstehen“, sagt Mathias.

„Das ist wichtig, um beispielsweise die Funktion protonierter Wassercluster in Proteinen zu entschlüsseln. Weil Wassermoleküle praktisch überall vorkommen, könnten die verbesserten Messungen etwa auch bei chemischen Analysen der Erdatmosphäre oder in der Astrochemie zum Einsatz kommen.“ (Angewandte Chemie online, 23. August 2010)

Wassermoleküle sind nicht gern allein. Das verdanken sie einer chemischen Besonderheit: Ihre Atome tragen starke Ladungen, sodass sich benachbarte Wassermoleküle anziehen und über sogenannte Wasserstoffbrücken zu Ketten oder gar Clustern zusammenschließen. Darin sind die einzelnen Wassermoleküle nicht mehr frei beweglich, sondern stark gebunden. Deshalb benötigt das Verdunsten von Wasser, also der Übergang vom flüssigen in den gasförmigen Zustand, auch relativ viel Energie, um diese Bindungen zu brechen. Lagern sich zusätzlich Protonen an, also die positiv geladenen Atomkerne von Wasserstoff, so spricht man von protonierten Wasserclustern. Diese Strukturen sind wichtige Modellsysteme, um die Lösung von Protonen in Wasser zu untersuchen und so dessen pH-Wert und Leitfähigkeit zu verstehen.

Das kleinste protonierte Wassercluster ist das Hydronium-Kation: Es besteht nur aus einem einzelnen Wassermolekül und besitzt die chemische Struktur H3O+. Das Zundel-Ion ist mit einem Proton, das sich zwei Wassermoleküle teilen, dagegen deutlich komplexer. Mithilfe infrarotspektroskopischer Messungen lassen sich die Eigenschaften verschiedener Wassercluster bestimmen. Dabei werden in den Molekülen durch infrarotes Licht verschiedene Schwingungen angeregt, für welche die eingestrahlte Wellenlänge, also die Farbe des Lichts, jeweils charakteristisch ist. Daraus lassen sich dann Rückschlüsse auf die dreidimensionale Struktur des Moleküls und die Stärke der atomaren Bindungen ziehen.

Um die Schwingungsspektren der Wassercluster im gasförmigen Zustand messen zu können, benötigt man kleine Moleküle oder Edelgase wie Neon oder Argon als Boten, welche sich quasi als Spione an die Wassercluster anlagern und die Schwingungen detektieren. „Diese Spektren hängen aber von den Botenmolekülen ab, sodass diese Wechselwirkung bei der Interpretation der Ergebnisse berücksichtigt werden muss“, sagt Dr. Gerald Mathias von der Fakultät für Physik der LMU München. Zusammen mit Forscherkollegen um Professor Dominik Marx von der Ruhr-Universität Bochum konnte er nun zeigen, dass bereits beim Hydronium-Kation durch den Einfluss der Botenmoleküle unerwartete Effekte bei den spektralen Banden auftreten. Mit Hilfe von Simulationen der Dynamik dieser Komplexe aus protonierten Wasserclustern und Botenmolekülen konnte das Team die tatsächlichen Spektren aber aus den Ergebnissen reproduzieren.

„Noch interessanter waren die Ergebnisse beim Zundel-Kation, das ständig seine Form ändert“, sagt Mathias. „Wir konnten zeigen, dass diese Struktur in zwei verschiedenen Formen vorliegt. Im stark gebundenen Zustand lagern sich die Boten direkt an das Zundel-Kation an, beim schwach gebundenen Zustand umkreisen sie es nur. Im schwach gebundenen Zustand konnten wir aber nahezu dieselben Farbspektren beobachten wie beim ungebundenen Zundel-Kation – sodass die Spektren also nicht von den Botenmolekülen beeinflusst wurden.“ Dieses Ergebnis erlaubt nun ein besseres Verständnis der experimentellen Botenspektroskopie, die zur chemischen Analyse der Bestandteile der Erdatmosphäre oder des interstellaren Raumes im Weltall eingesetzt wird. Die Forscher erhoffen sich außerdem neue Rückschlüsse auf die Struktur und Funktion protonierter Wassercluster in Proteinen. (CA/suwe)

Publikation:
„Theoretical Messenger Spectroscopy of
Microsolvated Hydronium and Zundel Cations”;
Marcel Baer, Dominik Marx, Gerald Mathias;
Angewandte Chemie,
23. August 2010,
DOI: 10.1002/anie.201001672
„Structures and spectral signatures of protonated water networks in bacteriorhodopsin”,
G. Mathias und D. Marx,
PNAS USA, 104, 6980–6985,
24. April 2007,
Doi:10.1073/pnas.0609229104
Ansprechpartner:
Dr. Gerald Mathias
Fakultät für Physik der LMU
Tel.: 089 / 2180 – 9228
Fax: 089 / 2180 – 9202
E-Mail: gerald.mathias@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.bmo.physik.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie