Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rechnung nicht ohne den Boten machen – Simulationen helfen protonierte Wassercluster zu vermessen

24.08.2010
Wassercluster bezeichnen Wassermoleküle, die sich kurzfristig zu größeren Molekülverbänden zusammenschließen. Diese Wassercluster können weitere positiv geladene Protonen aufnehmen und kommen dann als sogenannte protonierte Wassercluster auch etwa als funktionelle Gruppen in Proteinen vor. Mit Hilfe der Infrarotsprektroskopie lassen sich Bindungsstärke, die molekulare Geometrie und andere Eigenschaften protonierter Wassercluster bestimmen. Für die Messung der Schwingungsspektren sind Botenmoleküle nötig.

Ein Forscherteam um den LMU-Physiker Dr. Gerald Mathias und Professor Dominik Marx von der Ruhr-Universität Bochum, konnte nun erstmals nachweisen, wie diese Strukturen die Zuweisung der spektralen Banden bei der Infrarotspektroskopie beeinflussen. „Unsere Ergebnisse könnten dazu beitragen, solche Messungen besser zu verstehen“, sagt Mathias.

„Das ist wichtig, um beispielsweise die Funktion protonierter Wassercluster in Proteinen zu entschlüsseln. Weil Wassermoleküle praktisch überall vorkommen, könnten die verbesserten Messungen etwa auch bei chemischen Analysen der Erdatmosphäre oder in der Astrochemie zum Einsatz kommen.“ (Angewandte Chemie online, 23. August 2010)

Wassermoleküle sind nicht gern allein. Das verdanken sie einer chemischen Besonderheit: Ihre Atome tragen starke Ladungen, sodass sich benachbarte Wassermoleküle anziehen und über sogenannte Wasserstoffbrücken zu Ketten oder gar Clustern zusammenschließen. Darin sind die einzelnen Wassermoleküle nicht mehr frei beweglich, sondern stark gebunden. Deshalb benötigt das Verdunsten von Wasser, also der Übergang vom flüssigen in den gasförmigen Zustand, auch relativ viel Energie, um diese Bindungen zu brechen. Lagern sich zusätzlich Protonen an, also die positiv geladenen Atomkerne von Wasserstoff, so spricht man von protonierten Wasserclustern. Diese Strukturen sind wichtige Modellsysteme, um die Lösung von Protonen in Wasser zu untersuchen und so dessen pH-Wert und Leitfähigkeit zu verstehen.

Das kleinste protonierte Wassercluster ist das Hydronium-Kation: Es besteht nur aus einem einzelnen Wassermolekül und besitzt die chemische Struktur H3O+. Das Zundel-Ion ist mit einem Proton, das sich zwei Wassermoleküle teilen, dagegen deutlich komplexer. Mithilfe infrarotspektroskopischer Messungen lassen sich die Eigenschaften verschiedener Wassercluster bestimmen. Dabei werden in den Molekülen durch infrarotes Licht verschiedene Schwingungen angeregt, für welche die eingestrahlte Wellenlänge, also die Farbe des Lichts, jeweils charakteristisch ist. Daraus lassen sich dann Rückschlüsse auf die dreidimensionale Struktur des Moleküls und die Stärke der atomaren Bindungen ziehen.

Um die Schwingungsspektren der Wassercluster im gasförmigen Zustand messen zu können, benötigt man kleine Moleküle oder Edelgase wie Neon oder Argon als Boten, welche sich quasi als Spione an die Wassercluster anlagern und die Schwingungen detektieren. „Diese Spektren hängen aber von den Botenmolekülen ab, sodass diese Wechselwirkung bei der Interpretation der Ergebnisse berücksichtigt werden muss“, sagt Dr. Gerald Mathias von der Fakultät für Physik der LMU München. Zusammen mit Forscherkollegen um Professor Dominik Marx von der Ruhr-Universität Bochum konnte er nun zeigen, dass bereits beim Hydronium-Kation durch den Einfluss der Botenmoleküle unerwartete Effekte bei den spektralen Banden auftreten. Mit Hilfe von Simulationen der Dynamik dieser Komplexe aus protonierten Wasserclustern und Botenmolekülen konnte das Team die tatsächlichen Spektren aber aus den Ergebnissen reproduzieren.

„Noch interessanter waren die Ergebnisse beim Zundel-Kation, das ständig seine Form ändert“, sagt Mathias. „Wir konnten zeigen, dass diese Struktur in zwei verschiedenen Formen vorliegt. Im stark gebundenen Zustand lagern sich die Boten direkt an das Zundel-Kation an, beim schwach gebundenen Zustand umkreisen sie es nur. Im schwach gebundenen Zustand konnten wir aber nahezu dieselben Farbspektren beobachten wie beim ungebundenen Zundel-Kation – sodass die Spektren also nicht von den Botenmolekülen beeinflusst wurden.“ Dieses Ergebnis erlaubt nun ein besseres Verständnis der experimentellen Botenspektroskopie, die zur chemischen Analyse der Bestandteile der Erdatmosphäre oder des interstellaren Raumes im Weltall eingesetzt wird. Die Forscher erhoffen sich außerdem neue Rückschlüsse auf die Struktur und Funktion protonierter Wassercluster in Proteinen. (CA/suwe)

Publikation:
„Theoretical Messenger Spectroscopy of
Microsolvated Hydronium and Zundel Cations”;
Marcel Baer, Dominik Marx, Gerald Mathias;
Angewandte Chemie,
23. August 2010,
DOI: 10.1002/anie.201001672
„Structures and spectral signatures of protonated water networks in bacteriorhodopsin”,
G. Mathias und D. Marx,
PNAS USA, 104, 6980–6985,
24. April 2007,
Doi:10.1073/pnas.0609229104
Ansprechpartner:
Dr. Gerald Mathias
Fakultät für Physik der LMU
Tel.: 089 / 2180 – 9228
Fax: 089 / 2180 – 9202
E-Mail: gerald.mathias@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.bmo.physik.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften