Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rechnung nicht ohne den Boten machen – Simulationen helfen protonierte Wassercluster zu vermessen

24.08.2010
Wassercluster bezeichnen Wassermoleküle, die sich kurzfristig zu größeren Molekülverbänden zusammenschließen. Diese Wassercluster können weitere positiv geladene Protonen aufnehmen und kommen dann als sogenannte protonierte Wassercluster auch etwa als funktionelle Gruppen in Proteinen vor. Mit Hilfe der Infrarotsprektroskopie lassen sich Bindungsstärke, die molekulare Geometrie und andere Eigenschaften protonierter Wassercluster bestimmen. Für die Messung der Schwingungsspektren sind Botenmoleküle nötig.

Ein Forscherteam um den LMU-Physiker Dr. Gerald Mathias und Professor Dominik Marx von der Ruhr-Universität Bochum, konnte nun erstmals nachweisen, wie diese Strukturen die Zuweisung der spektralen Banden bei der Infrarotspektroskopie beeinflussen. „Unsere Ergebnisse könnten dazu beitragen, solche Messungen besser zu verstehen“, sagt Mathias.

„Das ist wichtig, um beispielsweise die Funktion protonierter Wassercluster in Proteinen zu entschlüsseln. Weil Wassermoleküle praktisch überall vorkommen, könnten die verbesserten Messungen etwa auch bei chemischen Analysen der Erdatmosphäre oder in der Astrochemie zum Einsatz kommen.“ (Angewandte Chemie online, 23. August 2010)

Wassermoleküle sind nicht gern allein. Das verdanken sie einer chemischen Besonderheit: Ihre Atome tragen starke Ladungen, sodass sich benachbarte Wassermoleküle anziehen und über sogenannte Wasserstoffbrücken zu Ketten oder gar Clustern zusammenschließen. Darin sind die einzelnen Wassermoleküle nicht mehr frei beweglich, sondern stark gebunden. Deshalb benötigt das Verdunsten von Wasser, also der Übergang vom flüssigen in den gasförmigen Zustand, auch relativ viel Energie, um diese Bindungen zu brechen. Lagern sich zusätzlich Protonen an, also die positiv geladenen Atomkerne von Wasserstoff, so spricht man von protonierten Wasserclustern. Diese Strukturen sind wichtige Modellsysteme, um die Lösung von Protonen in Wasser zu untersuchen und so dessen pH-Wert und Leitfähigkeit zu verstehen.

Das kleinste protonierte Wassercluster ist das Hydronium-Kation: Es besteht nur aus einem einzelnen Wassermolekül und besitzt die chemische Struktur H3O+. Das Zundel-Ion ist mit einem Proton, das sich zwei Wassermoleküle teilen, dagegen deutlich komplexer. Mithilfe infrarotspektroskopischer Messungen lassen sich die Eigenschaften verschiedener Wassercluster bestimmen. Dabei werden in den Molekülen durch infrarotes Licht verschiedene Schwingungen angeregt, für welche die eingestrahlte Wellenlänge, also die Farbe des Lichts, jeweils charakteristisch ist. Daraus lassen sich dann Rückschlüsse auf die dreidimensionale Struktur des Moleküls und die Stärke der atomaren Bindungen ziehen.

Um die Schwingungsspektren der Wassercluster im gasförmigen Zustand messen zu können, benötigt man kleine Moleküle oder Edelgase wie Neon oder Argon als Boten, welche sich quasi als Spione an die Wassercluster anlagern und die Schwingungen detektieren. „Diese Spektren hängen aber von den Botenmolekülen ab, sodass diese Wechselwirkung bei der Interpretation der Ergebnisse berücksichtigt werden muss“, sagt Dr. Gerald Mathias von der Fakultät für Physik der LMU München. Zusammen mit Forscherkollegen um Professor Dominik Marx von der Ruhr-Universität Bochum konnte er nun zeigen, dass bereits beim Hydronium-Kation durch den Einfluss der Botenmoleküle unerwartete Effekte bei den spektralen Banden auftreten. Mit Hilfe von Simulationen der Dynamik dieser Komplexe aus protonierten Wasserclustern und Botenmolekülen konnte das Team die tatsächlichen Spektren aber aus den Ergebnissen reproduzieren.

„Noch interessanter waren die Ergebnisse beim Zundel-Kation, das ständig seine Form ändert“, sagt Mathias. „Wir konnten zeigen, dass diese Struktur in zwei verschiedenen Formen vorliegt. Im stark gebundenen Zustand lagern sich die Boten direkt an das Zundel-Kation an, beim schwach gebundenen Zustand umkreisen sie es nur. Im schwach gebundenen Zustand konnten wir aber nahezu dieselben Farbspektren beobachten wie beim ungebundenen Zundel-Kation – sodass die Spektren also nicht von den Botenmolekülen beeinflusst wurden.“ Dieses Ergebnis erlaubt nun ein besseres Verständnis der experimentellen Botenspektroskopie, die zur chemischen Analyse der Bestandteile der Erdatmosphäre oder des interstellaren Raumes im Weltall eingesetzt wird. Die Forscher erhoffen sich außerdem neue Rückschlüsse auf die Struktur und Funktion protonierter Wassercluster in Proteinen. (CA/suwe)

Publikation:
„Theoretical Messenger Spectroscopy of
Microsolvated Hydronium and Zundel Cations”;
Marcel Baer, Dominik Marx, Gerald Mathias;
Angewandte Chemie,
23. August 2010,
DOI: 10.1002/anie.201001672
„Structures and spectral signatures of protonated water networks in bacteriorhodopsin”,
G. Mathias und D. Marx,
PNAS USA, 104, 6980–6985,
24. April 2007,
Doi:10.1073/pnas.0609229104
Ansprechpartner:
Dr. Gerald Mathias
Fakultät für Physik der LMU
Tel.: 089 / 2180 – 9228
Fax: 089 / 2180 – 9202
E-Mail: gerald.mathias@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.bmo.physik.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte