Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen mit Quantenkniff

10.04.2014

Mit einem Quantengatter entwickeln Max-Planck-Physiker ein essentielles Logikelement für einen Quantencomputer

Mit Quanteninformation ist künftig zu rechnen. Physiker des Max-Planck-Instituts für Quantenoptik in Garching haben ein neuartiges Quantengatter, ein elementares Bauelement eines Quantencomputers, entwickelt. Ein solcher Rechner könnte manche Aufgaben in Zukunft wesentlich schneller bewältigen als klassische Computer.


Atome und Photonen im Griff: In der Edelstahlhalterung sind zwei Glasspiegel in Form von Kegelstümpfen montiert, von denen einer rechts von der Bildmitte zu erkennen ist.

Stephan Ritter / MPI für Quantenoptik


Logik mit Atom und Photon: Das Atom (blau) im Resonator, der aus zwei Spiegeln besteht, und ein eingestrahltes Photon (rot) codieren jeweils ein Quantenbit.

© Grafik: Fritz Höffeler für die Max-Planck-Gesellschaft

Als zentrales Element ihres Quantengatters verwenden die Max-Planck-Physiker ein Atom, das zwischen zwei Spiegeln eines Resonators gefangen ist. Damit schalten sie den Zustand eines Photons, das am Resonator mit dem Atom reflektiert wird. Darüber hinaus kann diese Rechenoperation das Atom mit dem Photon verschränken.

Im verschränkten Zustand hängen die Eigenschaften verschiedener Quantenteilchen voneinander ab. Verschränkung erlaubt völlig neue Konzepte in der Informationsverarbeitung. Das Quantengatter, das die Garchinger Physiker nun vorstellen, ermöglicht es zudem, Quantennetzwerke zu konstruieren. In solchen Netzen könnte Information zwischen mehreren Quantenrechnern in Form von Photonen übertragen werden.

Die digitale Revolution dürfte in der Informationstechnologie nicht das Ende der Geschichte markieren. Denn ein Forscherteam um Gerhard Rempe, die am Max-Planck-Institut für Quantenoptik forschen, sowie zahlreiche weitere Wissenschaftler weltweit zetteln schon den nächsten Umbruch an. Der könnte nicht zuletzt deshalb kommen, weil Physiker mit einzelnen Atomen, Photonen und anderen Quantenteilchen geschickter hantieren als Franck Ribéry mit einem Fußball.

Mit ihren Experimenten loten die Forscher die Möglichkeiten aus, Daten in Form von Quantenbits, kurz Qubits, zu verarbeiten. Während klassische Bits nur als „0“ oder „1“ existieren, können sich die beiden Einstellungen in Qubits überlagern. Vor allem wenn mehrere Qubits zu einer Einheit zusammengefasst werden – Physiker sprechen davon, dass sie verschränkt werden – werden parallele Rechnungen möglich, die mit klassischen Computern undenkbar sind. „Wir stellen mit einem universellen Quantengatter nun ein essentielles Bauelement eines Quantencomputers“ sagt Stephan Ritter, Leiter des Experiments.

Ein Quantengatter aus einem Atom und einem Photon ermöglicht Quantennetzwerke

Ein CNOT-Gatter verknüpft ein Kontrollbit und ein Zielbit miteinander: Abhängig vom Zustand des Kontrollbits verändert es den Zustand des Zielbits oder nicht. Mit diesem Logikelement und wenigen anderen, einfachen Operationen lassen sich alle logischen Verknüpfungen umsetzen, die für Quantenrechnungen nötig sind. Für einen Quantencomputer braucht es viele solcher Logikelemente. Mit ihnen könnte der Quantenrechner in akzeptablen Zeiten schwierige Suchen in Datenbanken absolvieren, für die selbst die schnellsten Computer heute Monate brauchen. Ein Quantenrechner könnte zudem heute gängige Verschlüsselungen knacken. Damit ungebetene Mitleser auf diese Weise nicht unbegrenzten Zugriff auf die Datenübertragung bekommen, hält die Quanteninformationstechnologie aber ebenfalls ein probates Mittel bereit: die Quantenkryptografie, die verhindert, dass ein Spion in der Datenleitung unbemerkt Informationen abgreifen kann.

Das Logikgatter der Garchinger Physiker könnte sowohl für den Quantenrechner als auch für die Übertragung von Quanteninformation interessant sein, weil es Mittel beider Techniken nutzt. Die bisherigen Konzepte für einen Quantencomputer setzen auf denkbar winzige, aber immerhin solide Teichen wie etwa Atome oder Ionen. Inzwischen haben Physiker auch auf verschiedene Weisen Quantengatter erzeugt. Sehr erfolgreich gelang ihnen dies bisher mit Ionen, an denen österreichische Forscher schon 100 logische Operationen hintereinander vorgenommen haben. Die Quantenkommunikation, die auch der Quantenkryptografie zugrunde liegt, nutzt dagegen Photonen als mobiles Medium.

„Mit unserem Quantengatter haben wir ein hybrides System aus einem Photon und einem Atom im Resonator geschaffen“, sagt Andreas Reiserer, der das aktuelle Experiment im Rahmen seiner Doktorarbeit vornahm. „So könnten wir mehrere Quantenprozessoren miteinander vernetzen.“ Auf diese Weise ließe sich das Problem umgehen, dass sich möglicherweise nicht genügend Quantengatter zu einem Prozessor zusammenschließen lassen, damit der Quantenrechner seine Qualitäten ausspielen kann. In einem Quantennetzwerk mit hybriden Quantengattern als Schnittstellen würde dann nicht ein großer Quantencomputer besonders knifflige Aufgaben bearbeiten, sondern mehrere kleinere, die untereinander mit Photonen kommunizieren.

Ein neuer Mechanismus, um Qubits logisch miteinander zu verknüpfen

Stephan Ritter betont noch eine weitere Eigenschaft, die das Quantengatter des Teams auszeichnet. „Wir stellen einen neuen Wechselwirkungsmechanismus vor, mit dem sich logische Verknüpfungen von Qubits vornehmen lassen“, sagt der Forscher. „Davon gibt es bisher nicht viele, und neue sind auch nur schwer zu identifizieren.“ Als Wechselwirkung bezeichnen Physiker jeden Prozess, bei dem sich Teilchen oder Felder gegenseitig beeinflussen. Sie spielen bei allem eine Rolle, was in der Welt geschieht. Die meisten Wechselwirkungen zwischen Teilchen oder zwischen Licht und Teilchen lassen sich aber nicht gut genug kontrollieren, um sie für gezielte Rechenoperationen nutzen zu können.

Vor kurzem haben die Max-Planck-Forscher eine Wechselwirkung nun so gut in den Griff bekommen, dass sich damit ein Logikgatter betreiben lässt. Die Forscher können gezielt die Polarisation eines Photons ändern, indem sie es mit einem Rubidiumatom im Resonator interagieren lassen. Die Polarisation entspricht der Schwingungsebene der Lichtwelle, die in dem Photon steckt. Wird das Photon am Resonator mit dem Atom reflektiert, dreht diese Interaktion die Schwingungsebene – wenn sich das Atom in einem entsprechenden Zustand befindet.

Schon seit einigen Jahren können die Garchinger Forscher einzelne Atome für viele Sekunden, unter idealen Bedingungen sogar länger als eine Minute, zwischen den Spiegeln des Resonators fangen. Dabei helfen ihnen Laserstrahlen, die fein auf das System aus Resonator und Atom abgestimmt sind und das Teilchen mit der Kraft ihres elektromagnetischen Feldes zwischen den Spiegeln festsetzen. Mit weiteren Laserpulsen manipulieren die Physiker den Spin des Rubidiumatoms; der Spin ist eine quantenmechanische Eigenschaft, der das Atom zu einem winzigen Magneten macht. „Je nach der Richtung des Spins, ändert sich die Polarisation des Photons, das auf den Resonator mit dem Atom trifft“, erklärt Andreas Reiserer. Abhängig vom Zustand des Atoms, wird also das Qubit des photonischen Eingangssignals von „0“ auf „1“ oder umgekehrt geschaltet – ganz so, wie es vom CNOT-Gatter erwartet wird.

Mit verschränkten Teilchen kann ein Quantencomputer parallel rechnen

Bei geeigneten Eingangszuständen unterwirft der Schaltvorgang das Atom und das Photon zudem der Verschränkung. Eigenschaften verschränkter Teilchen hängen auf subtile Weise voneinander ab: Die Regeln der kuriosen Quantenwelt bedingen, dass der Spin des Atoms untrennbar mit der Polarisation des Photons verknüpft ist. Dabei bleibt die konkrete Ausprägung der beiden Eigenschaften – die Richtung von Spin und Polarisation – solange im Vagen, bis die jeweilige Eigenschaft an einem der Teilchen gemessen wird. Die Messung an einem der Teilchen legt dann aber im selben Moment den Zustand beider Teilchen fest – egal wie weit diese voneinander entfernt sind. Erst dieser Effekt – Albert Einstein sprach von einer geisterhaften Fernwirkung – erlaubt das parallele Rechnen, das den Quantencomputer bei manchen Aufgaben unvergleichlich schnell machen könnte.

Das Quantengatter kann mehrere Photonen mit einem Atom verschränken

Die Garchinger Physiker können ein Atom aber nicht nur mit einem einzigen Photon verschränken, indem sie den Spin des Atoms und die Polarisation des Photons geschickt wählen. Sie können gleich mehrere Photonen in die geisterhafte Abhängigkeit von dem Atom bringen. Und das hat unweigerlich zur Folge, dass alle Photonen und das Atom miteinander verschränkt sind. In seiner aktuellen Arbeit hat das Garchinger Team dies mit zwei Photonen durchexerziert. Damit aber nicht genug: In weiteren Experimenten haben sie das Atom aus der verschränkten Ménage-à-trois herausgenommen, sodass nur noch ein Paar verschränkte Photonen übrig bleibt. Das Atom im Resonator steht so wieder für neue Aufgaben zur Verfügung.

„Mit der aktuellen Arbeit haben wir einen Höhepunkt in unserer Forschung der vergangenen Jahre erreicht“, sagt Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik. „Wir haben Information zunächst in einzelnen Atomen gespeichert und wieder ausgelesen. Dann haben wir Qubits von einem Atom zum nächsten verschickt, jetzt haben wir mit unserem System Quanteninformation auch erstmals verarbeitet.“ Von hier bis zu einem Quantennetzwerk mehrerer Quantencomputer ist es zwar noch ein weiter Weg, doch die Garchinger Physiker schaffen dafür die Basis, indem sie ihren Einfluss in der Quantenwelt immer mehr ausweiten. „Wir können inzwischen viele Effekte kontrollieren, die künftig auch in der Quanteninformationstechnologie Anwendung finden könnten“, so Rempe.

Kontakt:
Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905-728
E-Mail: stephan.ritter@mpq.mpg.de

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Telefon: +49 89 32905-701
Fax: +49 89 32905-311
E-Mail:Gerhard.Rempe@mpq.mpg.de

Originalpublikation:
A quantum gate between a flying optical photon and a single trapped atom
Andreas Reiserer, Norbert Kalb, Gerhard Rempe und Stephan Ritter
Nature, 10. April 2014

Weitere Informationen:

http://www.mpg.de/8072628/rempe_quanteninformation - Das dressierte Atom

Peter Hergersberg | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise