Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen mit Licht

13.05.2013
Physiker der Universitäten Jena und Wien präsentieren im Fachmagazin "Nature Photonics" einen optischen Quanten-Computer-Chip

Rund 700 Millionen Transistoren stecken heute in jedem gängigen Computer-Prozessor. Ihre immer größere und schnellere Rechenleistung verdanken moderne PCs der immer größeren Zahl winziger Schaltkreise, die unter ihrem Gehäuse verbaut sind.

Doch die Miniaturisierung in der IT-Branche hat ihre Grenzen längst erreicht: "Kleinere Transistoren sind praktisch nicht möglich; insofern ist auch die Zahl, die in einem Computer Platz findet, inzwischen begrenzt", weiß Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena. Um die Rechnerleistung künftig noch weiter zu verbessern, brauche es daher völlig neue Konzepte, so der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme.

Ein Konzept, in das nicht nur der Physiker Szameit und seine Kollegen große Hoffnungen setzen, sind Quanten-Computer. Doch deren Entwicklung steckt noch in den Kinderschuhen: Erste einfache Prototypen sind raumfüllende Ungetüme. Gemeinsam mit Fachkollegen um Prof. Dr. Philip Walther aus Wien haben Prof. Szameit und sein Mitarbeiter René Heilmann jetzt jedoch einen optischen Schaltkreis entwickelt, der auf einem handtellergroßen Glas-Chip Platz findet und der es ermöglicht, mittels sogenannter verschränkter Photonen Informationen zu verarbeiten. Diesen optischen Quanten-Computer-Chip stellen die Physiker in der aktuellen Ausgabe des renommierten Fachmagazins "Nature Photonics" vor (DOI: 10.1038/NPHOTON.2013.102).

"Wir nutzen Photonen - also Lichtteilchen - zur Informationsverarbeitung", erläutert Heilmann, der als Doktorand in der Gruppe von Prof. Szameit arbeitet. Bei diesem "Bosonen-Sampling" genannten Verfahren werden Photonen durch ein System von Wellenleitern geschickt, die in den Glas-Chip graviert sind und anschließend detektiert. Der Kniff dieser zunächst wenig spektakulär klingenden Versuchsanordnung steckt im Detail: Die eingesetzten Photonen sind miteinander verschränkt - so nennen Physiker zwei oder mehrere Quantenteilchen, deren Eigenschaften sich gegenseitig bedingen. "Verschränkte Photonen gehen aus ein und demselben Ursprungsphoton hervor und unterscheiden sich zum Beispiel nur in ihrer Polarisationsrichtung." Ändert sich die Polarisation des einen Photons, wird damit zugleich die Polarisation des anderen festgelegt. Diese von Albert Einstein einst "spukhafte Fernwirkung" genannte Verschränkung ist die grundlegende Eigenschaft von Teilchen, um sie in Quanten-Computern als Informationsträger nutzen zu können.

Während konventionelle Transistoren lediglich mit zwei Zuständen der Informationsträger arbeiten - mit "an" und "aus" bzw. "0" und "1" - können diese in Quanten-Computern viel mehr unterschiedliche Zustände einnehmen, was die Rechenleistung und damit die Geschwindigkeit der Informationsverarbeitung um ein Vielfaches erhöht. "Das, wozu ein üblicher Computer mehrere Millionen Transistoren benötigt, kann ein Quanten-Computer mit vielleicht 10 Photonen schaffen", verdeutlicht Szameit. So können sich auch sehr komplexe Probleme lösen lassen, die konventionelle Rechner nur mit extrem großem Zeitaufwand bewältigen.

Im vorliegenden Fall haben die Forscher verschränkte Photonen durch optische Schaltkreise geschickt und aus der statistischen Verteilung der Lichtteilchen dessen innere Struktur berechnet. "Ein konventioneller Computer hätte dazu eine nahezu unendlich lange Zeit gebraucht", sagt Szameit. Da sich die Forscher aber die Quanteneigenschaften der verschränkten Photonen zunutze gemacht haben, konnten sie mehr Informationen extrahieren als es auf dem klassischen Weg möglich gewesen wäre. Damit haben die Physiker aus Jena und Wien den Beweis geliefert, dass es möglich ist, mit Licht zu rechnen - auch wenn der Weg zum ersten optischen Quanten-Computer noch weit sein dürfte.

Original-Publikation:
Tillmann M et al. Experimental Boson Sampling, Nature Photonics 2013, advanced online publication (DOI: 10.1038/NPHOTON.2013.102).

Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: alexander.szameit[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften