Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen mit Licht

13.05.2013
Physiker der Universitäten Jena und Wien präsentieren im Fachmagazin "Nature Photonics" einen optischen Quanten-Computer-Chip

Rund 700 Millionen Transistoren stecken heute in jedem gängigen Computer-Prozessor. Ihre immer größere und schnellere Rechenleistung verdanken moderne PCs der immer größeren Zahl winziger Schaltkreise, die unter ihrem Gehäuse verbaut sind.

Doch die Miniaturisierung in der IT-Branche hat ihre Grenzen längst erreicht: "Kleinere Transistoren sind praktisch nicht möglich; insofern ist auch die Zahl, die in einem Computer Platz findet, inzwischen begrenzt", weiß Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena. Um die Rechnerleistung künftig noch weiter zu verbessern, brauche es daher völlig neue Konzepte, so der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme.

Ein Konzept, in das nicht nur der Physiker Szameit und seine Kollegen große Hoffnungen setzen, sind Quanten-Computer. Doch deren Entwicklung steckt noch in den Kinderschuhen: Erste einfache Prototypen sind raumfüllende Ungetüme. Gemeinsam mit Fachkollegen um Prof. Dr. Philip Walther aus Wien haben Prof. Szameit und sein Mitarbeiter René Heilmann jetzt jedoch einen optischen Schaltkreis entwickelt, der auf einem handtellergroßen Glas-Chip Platz findet und der es ermöglicht, mittels sogenannter verschränkter Photonen Informationen zu verarbeiten. Diesen optischen Quanten-Computer-Chip stellen die Physiker in der aktuellen Ausgabe des renommierten Fachmagazins "Nature Photonics" vor (DOI: 10.1038/NPHOTON.2013.102).

"Wir nutzen Photonen - also Lichtteilchen - zur Informationsverarbeitung", erläutert Heilmann, der als Doktorand in der Gruppe von Prof. Szameit arbeitet. Bei diesem "Bosonen-Sampling" genannten Verfahren werden Photonen durch ein System von Wellenleitern geschickt, die in den Glas-Chip graviert sind und anschließend detektiert. Der Kniff dieser zunächst wenig spektakulär klingenden Versuchsanordnung steckt im Detail: Die eingesetzten Photonen sind miteinander verschränkt - so nennen Physiker zwei oder mehrere Quantenteilchen, deren Eigenschaften sich gegenseitig bedingen. "Verschränkte Photonen gehen aus ein und demselben Ursprungsphoton hervor und unterscheiden sich zum Beispiel nur in ihrer Polarisationsrichtung." Ändert sich die Polarisation des einen Photons, wird damit zugleich die Polarisation des anderen festgelegt. Diese von Albert Einstein einst "spukhafte Fernwirkung" genannte Verschränkung ist die grundlegende Eigenschaft von Teilchen, um sie in Quanten-Computern als Informationsträger nutzen zu können.

Während konventionelle Transistoren lediglich mit zwei Zuständen der Informationsträger arbeiten - mit "an" und "aus" bzw. "0" und "1" - können diese in Quanten-Computern viel mehr unterschiedliche Zustände einnehmen, was die Rechenleistung und damit die Geschwindigkeit der Informationsverarbeitung um ein Vielfaches erhöht. "Das, wozu ein üblicher Computer mehrere Millionen Transistoren benötigt, kann ein Quanten-Computer mit vielleicht 10 Photonen schaffen", verdeutlicht Szameit. So können sich auch sehr komplexe Probleme lösen lassen, die konventionelle Rechner nur mit extrem großem Zeitaufwand bewältigen.

Im vorliegenden Fall haben die Forscher verschränkte Photonen durch optische Schaltkreise geschickt und aus der statistischen Verteilung der Lichtteilchen dessen innere Struktur berechnet. "Ein konventioneller Computer hätte dazu eine nahezu unendlich lange Zeit gebraucht", sagt Szameit. Da sich die Forscher aber die Quanteneigenschaften der verschränkten Photonen zunutze gemacht haben, konnten sie mehr Informationen extrahieren als es auf dem klassischen Weg möglich gewesen wäre. Damit haben die Physiker aus Jena und Wien den Beweis geliefert, dass es möglich ist, mit Licht zu rechnen - auch wenn der Weg zum ersten optischen Quanten-Computer noch weit sein dürfte.

Original-Publikation:
Tillmann M et al. Experimental Boson Sampling, Nature Photonics 2013, advanced online publication (DOI: 10.1038/NPHOTON.2013.102).

Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: alexander.szameit[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik