Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realisierbarkeit von Optik für Gammastrahlen nachgewiesen - neuer Forschungszweig möglich

10.05.2012
Wissenschaftler am Institut Laue-Langevin (ILL) haben erstmals gezeigt, dass Gammastrahlen, eine hochenergetische Form von Licht, die durch radioaktiven Zerfall von Atomkernen entsteht und unter anderem zur Bekämpfung von Krebszellen verwendet wird, gebrochen werden können.

In einem jetzt in Physical Review Letters veröffentlichten Artikel beschreiben die Wissenschaftler, wie sie das bekannte Schulexperiment der Beugung von Lichtstrahlen mittels Glasprismen – die Anordnung ähnelte der Newtons von 1665 –, abwandelten. Dabei wiesen sie Beugung oder „Brechung“ bei den höchsten jemals beobachteten Energien nach.


Beim Experiment verwendetes Gerät
Quelle: Institut Laue-Langevin (ILL)


Beim Experiment verwendetes Gerät
Quelle: Institut Laue-Langevin (ILL)

Wissenschaftler am Institut Laue-Langevin (ILL) haben erstmals gezeigt, dass Gammastrahlen, eine hochenergetische Form von Licht, die durch radioaktiven Zerfall von Atomkernen entsteht und unter anderem zur Bekämpfung von Krebszellen verwendet wird, gebrochen werden können. In einem jetzt in Physical Review Letters veröffentlichten Artikel beschreiben die Wissenschaftler, wie sie das bekannte Schulexperiment der Beugung von Lichtstrahlen mittels Glasprismen – die Anordnung ähnelte der Newtons von 1665 –, abwandelten. Dabei wiesen sie Beugung oder „Brechung“ bei den höchsten jemals beobachteten Energien nach.

Ihre Entdeckung widerlegt seit vielen Jahrzehnten bestehende theoretische Annahmen und öffnet die Tür zu einem neuen Bereich der Wissenschaft, der sogenannten nuklearen Photonik. Durch Brechung und Fokussierung in konzentrierte Strahlen könnten Gammastrahlenmikroskope aus der Ferne nach gefährlichem nuklearem Material in Schiffen und Lastwagen suchen, nuklearen Abfall überwachen oder ausgewählte, weniger schädigende medizinische Bildgebungsverfahren zur Krebsdiagnostik und behandlung bereitstellen.

Beugung tritt auf, wenn Licht von einem Medium in ein anderes übergeht und dabei seine Geschwindigkeit ändert. Diese Manipulation von Lichtstrahlen, die Galileo 1609 zum Bau seiner berühmten Teleskope nutzte, ist auch für andere Arten von Strahlung möglich, solange man sie hinreichend stark brechen kann.

Wenn man jedoch die Strahlungsenergie bis zum Lichtspektrum von Röntgenstrahlen erhöht, nimmt der Betrag der Brechung ab. Infolgedessen gelang es Forschern erst Ende des 20. Jahrhunderts durch Kombination von Hunderten optischer Linsen, fokussierende Instrumente für Röntgenstrahlen zu bauen.

Diese werden heute in Einrichtungen wie der Diamond Light Source (eine Synchrotronstrahlungsquelle in Oxfordshire, England) und der European Synchrotron Radiation Facility (ESRF – eine multinationale Großforschungseinrichtung mit Sitz in Grenoble, Frankreich) eingesetzt, um Material auf einer Nanoskala zu untersuchen.

Während sich Forschung mit Röntgenstrahlen als eine bedeutende Quelle wissenschaftlicher Erkenntnis und Entdeckung erwiesen hat, betrachtete man die Chancen, hinreichende Brechung von Gammastrahlen zu finden, als zu gering. Diese Annahme war jedoch rein theoretisch. So entschlossen sich Wissenschaftler am ILL und der Ludwig-Maximilians-Universität München zu einer Überprüfung.

Das ILL ist nicht nur das herausragende Zentrum für Neutronenforschung mit einer der stärksten Neutronenquellen der Welt, sondern beherbergt auch eine der intensivsten Gammastrahlenquellen in Europa [1] und eine Reihe hochempfindlicher Instrumente zur sehr genauen Messung von Brechung.

Die von der PN-3-Einrichtung [1] des ILL erzeugten Gammastrahlen wurden mit zwei Siliziumkristallen analysiert. Der erste Kristall selektierte sie am Ausgang des Reaktors und formte sie zu einem sehr dünnen und parallelen Strahl. Weiter entlang des Instruments war ein Siliziumprisma so angeordnet, dass es die Hälfte des Gammastrahls brach. Die Brechung dieses Halbstrahls wurde dann mit einem zweiten Siliziumkristall nachgewiesen und mit der anderen, ungebrochenen Hälfte des Gammastrahls verglichen.

Die Wissenschaftler fanden dabei heraus, dass mit zunehmender Energie der Gammastrahlen die abnehmenden Brechungswerte, die auf kleine negative Zahlen abgesunken waren, plötzlich das Vorzeichen wechselten und wieder zunahmen zu größeren positiven Brechungswerten, ähnlich denen von sichtbarem Licht. Diese Werte waren wesentlich höher als allgemein erwartet. Die Forscher glauben nun, dass sie durch Ersetzen der Siliziumprismen durch höher brechendes Material, etwa Gold, die Brechung so stark erhöhen können, dass sie realistischerweise für optische Techniken verwendet werden kann. Mögliche Anwendungen gründen sich auf die Eigenschaft von Gammastrahlen, Material leicht zu durchdringen, sogar dicke Bleischichten, und die Tatsache, dass sie zwischen Isotopen desselben Elements unterscheiden können.

Dr. Michael Jentschel, Forscher am ILL: „Vor 20 Jahren zweifelten viele Leute daran, dass man mit Röntgenstrahlen Optik betreiben kann – niemand wagte, daran zu denken, dass dies sogar für Gammastrahlen möglich sein sollte. Dies ist eine bemerkenswerte und völlig unerwartete Entdeckung mit großen Auswirkungen auf die Wissenschaft und praktischen Anwendungen. Dazu gehört isotopenspezifische Mikroskopie mit Nutzen in allen wissenschaftlichen Disziplinen über die direkte medizinische Behandlung und sogar bis zu Werkzeugen für Zwecke der nationalen Sicherheit.“

Zu den möglichen Anwendungen gehören:

• Selektivere und weniger schädigende medizinische Bildgebungsverfahren durch Anreicherung eines spezifischen Isotops in einem Krebsgeschwür und Beobachtung, wie sich das Geschwür entwickelt

• Verbesserte Herstellung und Erprobung neuer, zielgenauer Radioisotope für Krebsbehandlung

• Bestimmung von Kernmaterial oder radioaktivem Abfall aus der Ferne – die hohe Eindringtiefe von Gammastrahlen erlaubt die Suche nach Nuklearmaterialien in Schiffen oder Lastwagen oder das Analysieren und Überwachen von nuklearem Abfall in sicheren Containern, ohne sie öffnen zu müssen.

Mit dieser jetzt mit Gammastrahlen nachgewiesenen wertvollen Eigenschaft konzentriert man sich darauf, geeignete Gammastrahlenquellen zu entwickeln, um diese Technik verfügbar zu machen. Bisher gibt es keine keine Quellen für Gammastrahlen, die vergleichbar mit den Röntgenstrahlensynchrotrons wie ESRF oder Diamond sind.

In den letzten Jahren hatte jedoch die Ankündigung, dass die Forschungseinrichtung Extreme Light Infrastructure Nuclear Physics (ELI-NP) in Magurele bei Bukarest, Rumänien, eine neue Gammaquelle mit höherer Photonenenergie enthalten wird, das Interesse neu geweckt. Dr. Jentschel und seine Kollegen glauben, dass ihre Entdeckung der Möglichkeit optischer Beeinflussung von Gammastrahlen die Empfindlichkeit von Experimenten beim ELI um 2 bis 6 Größenordnungen verbessern wird.

Arno Laxy | idw
Weitere Informationen:
http://www.ill.eu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln Methode zur Manipulation von Molekülen
28.08.2015 | Universität Leipzig

nachricht Ozeanplaneten weniger lebensfreundlich als vermutet
28.08.2015 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: Optische Schalter - Lernen mit Licht

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Membranprotein in Bern erstmals entschlüsselt

Dreidimensionale (3D) Atommodelle von Proteinen sind wichtig, um deren Funktion zu verstehen. Dies ermöglicht unter anderem die Entwicklung neuer Therapieansätze für Krankheiten. Berner Strukturbiologen ist es nun gelungen, die Struktur eines wichtigen Membranproteins zu entschlüsseln – dies gelingt relativ selten und ist eine Premiere in Bern.

Membranproteine befinden sich in den Wänden der Zellen, den Zellmembranen, und nehmen im menschlichen Körper lebenswichtige Funktionen wahr. Zu ihnen gehören...

Im Focus: Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gravitationswellen im Einsteinjahr

28.08.2015 | Veranstaltungen

Strömungen in industriellen Anlagen sichtbar gemacht

28.08.2015 | Veranstaltungen

Konzepte gegen Fachkräftemangel: Demografiekonferenz in Halle

27.08.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Siemens an der Sicherheit: Lösungen für jede Anforderung

28.08.2015 | Messenachrichten

Biofabrikation von künstlichen Blutgefäßen mit Laserlicht

28.08.2015 | Biowissenschaften Chemie

Forscher entwickeln Methode zur Manipulation von Molekülen

28.08.2015 | Physik Astronomie