Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realisierbarkeit von Optik für Gammastrahlen nachgewiesen - neuer Forschungszweig möglich

10.05.2012
Wissenschaftler am Institut Laue-Langevin (ILL) haben erstmals gezeigt, dass Gammastrahlen, eine hochenergetische Form von Licht, die durch radioaktiven Zerfall von Atomkernen entsteht und unter anderem zur Bekämpfung von Krebszellen verwendet wird, gebrochen werden können.

In einem jetzt in Physical Review Letters veröffentlichten Artikel beschreiben die Wissenschaftler, wie sie das bekannte Schulexperiment der Beugung von Lichtstrahlen mittels Glasprismen – die Anordnung ähnelte der Newtons von 1665 –, abwandelten. Dabei wiesen sie Beugung oder „Brechung“ bei den höchsten jemals beobachteten Energien nach.


Beim Experiment verwendetes Gerät
Quelle: Institut Laue-Langevin (ILL)


Beim Experiment verwendetes Gerät
Quelle: Institut Laue-Langevin (ILL)

Wissenschaftler am Institut Laue-Langevin (ILL) haben erstmals gezeigt, dass Gammastrahlen, eine hochenergetische Form von Licht, die durch radioaktiven Zerfall von Atomkernen entsteht und unter anderem zur Bekämpfung von Krebszellen verwendet wird, gebrochen werden können. In einem jetzt in Physical Review Letters veröffentlichten Artikel beschreiben die Wissenschaftler, wie sie das bekannte Schulexperiment der Beugung von Lichtstrahlen mittels Glasprismen – die Anordnung ähnelte der Newtons von 1665 –, abwandelten. Dabei wiesen sie Beugung oder „Brechung“ bei den höchsten jemals beobachteten Energien nach.

Ihre Entdeckung widerlegt seit vielen Jahrzehnten bestehende theoretische Annahmen und öffnet die Tür zu einem neuen Bereich der Wissenschaft, der sogenannten nuklearen Photonik. Durch Brechung und Fokussierung in konzentrierte Strahlen könnten Gammastrahlenmikroskope aus der Ferne nach gefährlichem nuklearem Material in Schiffen und Lastwagen suchen, nuklearen Abfall überwachen oder ausgewählte, weniger schädigende medizinische Bildgebungsverfahren zur Krebsdiagnostik und behandlung bereitstellen.

Beugung tritt auf, wenn Licht von einem Medium in ein anderes übergeht und dabei seine Geschwindigkeit ändert. Diese Manipulation von Lichtstrahlen, die Galileo 1609 zum Bau seiner berühmten Teleskope nutzte, ist auch für andere Arten von Strahlung möglich, solange man sie hinreichend stark brechen kann.

Wenn man jedoch die Strahlungsenergie bis zum Lichtspektrum von Röntgenstrahlen erhöht, nimmt der Betrag der Brechung ab. Infolgedessen gelang es Forschern erst Ende des 20. Jahrhunderts durch Kombination von Hunderten optischer Linsen, fokussierende Instrumente für Röntgenstrahlen zu bauen.

Diese werden heute in Einrichtungen wie der Diamond Light Source (eine Synchrotronstrahlungsquelle in Oxfordshire, England) und der European Synchrotron Radiation Facility (ESRF – eine multinationale Großforschungseinrichtung mit Sitz in Grenoble, Frankreich) eingesetzt, um Material auf einer Nanoskala zu untersuchen.

Während sich Forschung mit Röntgenstrahlen als eine bedeutende Quelle wissenschaftlicher Erkenntnis und Entdeckung erwiesen hat, betrachtete man die Chancen, hinreichende Brechung von Gammastrahlen zu finden, als zu gering. Diese Annahme war jedoch rein theoretisch. So entschlossen sich Wissenschaftler am ILL und der Ludwig-Maximilians-Universität München zu einer Überprüfung.

Das ILL ist nicht nur das herausragende Zentrum für Neutronenforschung mit einer der stärksten Neutronenquellen der Welt, sondern beherbergt auch eine der intensivsten Gammastrahlenquellen in Europa [1] und eine Reihe hochempfindlicher Instrumente zur sehr genauen Messung von Brechung.

Die von der PN-3-Einrichtung [1] des ILL erzeugten Gammastrahlen wurden mit zwei Siliziumkristallen analysiert. Der erste Kristall selektierte sie am Ausgang des Reaktors und formte sie zu einem sehr dünnen und parallelen Strahl. Weiter entlang des Instruments war ein Siliziumprisma so angeordnet, dass es die Hälfte des Gammastrahls brach. Die Brechung dieses Halbstrahls wurde dann mit einem zweiten Siliziumkristall nachgewiesen und mit der anderen, ungebrochenen Hälfte des Gammastrahls verglichen.

Die Wissenschaftler fanden dabei heraus, dass mit zunehmender Energie der Gammastrahlen die abnehmenden Brechungswerte, die auf kleine negative Zahlen abgesunken waren, plötzlich das Vorzeichen wechselten und wieder zunahmen zu größeren positiven Brechungswerten, ähnlich denen von sichtbarem Licht. Diese Werte waren wesentlich höher als allgemein erwartet. Die Forscher glauben nun, dass sie durch Ersetzen der Siliziumprismen durch höher brechendes Material, etwa Gold, die Brechung so stark erhöhen können, dass sie realistischerweise für optische Techniken verwendet werden kann. Mögliche Anwendungen gründen sich auf die Eigenschaft von Gammastrahlen, Material leicht zu durchdringen, sogar dicke Bleischichten, und die Tatsache, dass sie zwischen Isotopen desselben Elements unterscheiden können.

Dr. Michael Jentschel, Forscher am ILL: „Vor 20 Jahren zweifelten viele Leute daran, dass man mit Röntgenstrahlen Optik betreiben kann – niemand wagte, daran zu denken, dass dies sogar für Gammastrahlen möglich sein sollte. Dies ist eine bemerkenswerte und völlig unerwartete Entdeckung mit großen Auswirkungen auf die Wissenschaft und praktischen Anwendungen. Dazu gehört isotopenspezifische Mikroskopie mit Nutzen in allen wissenschaftlichen Disziplinen über die direkte medizinische Behandlung und sogar bis zu Werkzeugen für Zwecke der nationalen Sicherheit.“

Zu den möglichen Anwendungen gehören:

• Selektivere und weniger schädigende medizinische Bildgebungsverfahren durch Anreicherung eines spezifischen Isotops in einem Krebsgeschwür und Beobachtung, wie sich das Geschwür entwickelt

• Verbesserte Herstellung und Erprobung neuer, zielgenauer Radioisotope für Krebsbehandlung

• Bestimmung von Kernmaterial oder radioaktivem Abfall aus der Ferne – die hohe Eindringtiefe von Gammastrahlen erlaubt die Suche nach Nuklearmaterialien in Schiffen oder Lastwagen oder das Analysieren und Überwachen von nuklearem Abfall in sicheren Containern, ohne sie öffnen zu müssen.

Mit dieser jetzt mit Gammastrahlen nachgewiesenen wertvollen Eigenschaft konzentriert man sich darauf, geeignete Gammastrahlenquellen zu entwickeln, um diese Technik verfügbar zu machen. Bisher gibt es keine keine Quellen für Gammastrahlen, die vergleichbar mit den Röntgenstrahlensynchrotrons wie ESRF oder Diamond sind.

In den letzten Jahren hatte jedoch die Ankündigung, dass die Forschungseinrichtung Extreme Light Infrastructure Nuclear Physics (ELI-NP) in Magurele bei Bukarest, Rumänien, eine neue Gammaquelle mit höherer Photonenenergie enthalten wird, das Interesse neu geweckt. Dr. Jentschel und seine Kollegen glauben, dass ihre Entdeckung der Möglichkeit optischer Beeinflussung von Gammastrahlen die Empfindlichkeit von Experimenten beim ELI um 2 bis 6 Größenordnungen verbessern wird.

Arno Laxy | idw
Weitere Informationen:
http://www.ill.eu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert
04.05.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht MICROSCOPE sendet
04.05.2016 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

2012 war es die Venus, in diesem Jahr ist der Planet Merkur dran, vor der Sonne zu passieren. Für fast acht Stunden werden wir am 9. Mai 2016 die Möglichkeit haben, den Planeten Merkur als kleinen schwarzen Punkt auf der Oberfläche der Sonne durchziehen zu sehen. Das EU-Projekt STARS4ALL, an dem auch das IGB beteiligt ist, wird in Zusammenarbeit mit www.sky-live.tv das Phänomen von Teneriffa und von Island aus live übertragen. STARS4ALL bietet dazu Bildungsmaterial für Schüler an.

Am 9. Mai 2016, um die Mittagszeit, wird der Planet Merkur anfangen, die Scheibe der Sonne zu kreuzen; eine Reise, welche über sieben Stunden dauern wird.

Im Focus: MICROSCOPE sendet

Am Montag, 2. Mai 2016, erreichte die Wissenschaftlerinnen und Wissenschaftler vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen die erste Erfolgsmeldung von ihrem Forschungs-Satelliten. Per Videoübertragung waren sie zugeschaltet, als die französischen Kollegen das Experiment an Bord von MICROSCOPE (MICRO Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) initialisierten und das Messinstrument die ersten Testdaten übermittelte. Damit ist der wichtigste Meilenstein der Testphase erreicht, bevor sich herausstellt, ob Einsteins Relativitätstheorie auch nach dieser Satellitenmission noch Bestand haben wird.

“#TSAGE @onera_fr is on. The test masses have been released and servo looped!!!! Great all green“ lautet die Twitter-Nachricht der französischen Partner, die...

Im Focus: Genauester Spiegel der Welt bei European XFEL in Hamburg eingetroffen

Der vermutlich präziseste Spiegel der Welt ist bei European XFEL in der Metropolregion Hamburg eingetroffen. Der 95 Zentimeter lange Spiegel ist ein wichtiges Bauteil des Röntgenlasers, der 2017 in Betrieb gehen soll. Auf den ersten Blick sieht er einem normalen Spiegel durchaus ähnlich, ist jedoch extrem flach und glatt. Die größten Unebenheiten auf seiner Oberfläche haben eine Dimension von gerade einmal einem Nanometer, einem milliardstel Meter. Diese Präzision entspräche einer 40 Kilometer langen Straße, deren maximale Unebenheit gerade einmal so groß ist wie der Durchmesser eines Haars.

Der Röntgenspiegel ist der erste von mehreren, die an unterschiedlichen Stellen der Anlage zum Spiegeln und Filtern des Röntgenlaserstrahls eingebaut werden....

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress in Berlin beginnt heute

04.05.2016 | Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

04.05.2016 | Energie und Elektrotechnik

Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

04.05.2016 | Physik Astronomie

Mehr als eine mechanische Barriere - Epithelzellen kämpfen aktiv gegen das Grippevirus

04.05.2016 | Biowissenschaften Chemie