Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RAVE kartiert interstellare Materie

15.08.2014

Ein internationales Team von Astronomen hat mithilfe von RAVE-Daten detailgenaue Karten der interstellaren Materie der Milchstraße erzeugt.

Diese Karten könnten zur Lösung eines Rätsels beitragen, welches die Wissenschaftler seit fast einem Jahrhundert beschäftigt: die Natur des letzten mysteriösen Bausteins der interstellaren Materie, dem Material im Leerraum zwischen den Sternen einer Galaxie, zu entschlüsseln.


Maps of the measured DIB absorption in respect to the area they cover in our galaxy.

Credit: RAVE / Janez Kos

Die Karten und die dazugehörige wissenschaftliche Studie erscheinen in der Ausgabe vom 15. August 2014 der Zeitschrift Science. Sie basieren auf Daten einer zehnjährigen Beobachtungskampagne des vom AIP initiierten und koordinierten Radial Velocity Experiments (RAVE) mit dem insgesamt 500.000 Sterne der Milchstraße erfasst wurden.

Material im interstellaren Raum, ein Gemisch aus Staub und Gas aus Atomen und Molekülen, bleibt übrig wenn ein Stern stirbt und wird so auch zum Baustein neuer Sterne und Planeten. Die Farb- beziehungsweise Energieanalyse des Lichts, welches sich durch den Raum fortbewegt, liefert Astronomen wichtige Informationen über die Zusammensetzung der Materie, die das Licht zuvor passiert hat.

Im Jahr 1922 entdeckte die junge Astronomin Mary Lea Heger in ihren Beobachtungen dunkle Linien, die belegten, dass das Licht von einer bis dato unbekannten Quelle absorbiert worden sein musste. Diese Linien wurden „Diffuse Interstellare Bänder“ (DIBs) genannt. Durch welche Art von Materie sie erzeugt werden und wo genau sich diese im Raum befindet ist bis heute unklar.

Eben dies herauszufinden ist jedoch extrem wichtig für Astronomen, um Aufschluss über die physikalischen Bedingungen und die Chemie des interstellaren Raumes zu erhalten, auf denen wiederum die Theorien zur Stern- und Galaxienentstehung basieren.

Eine Vermutung der Wissenschaftler ist, dass die DIBs erzeugende Absorption des Sternenlichts, auf die Existenz von ungewöhnlich großen, komplexen Molekülen hinweist. Ein Beweis dieser These steht noch aus. Die neuen 3D-Karten des DIB-erzeugenden Materials in unserer Milchstraße, welche von dem Team aus 23 Wissenschaftlern nun in Science vorgestellt werden, könnten jetzt zu einer Lösung des langjährigen astronomischen Rätsels beitragen.

„Durch die großräumige Vermessung unserer Milchstraße mit der Durchmusterung RAVE konnte erstmals die dreidimensionale Verteilung der „DIBs“ vermessen werden“, so Prof. Matthias Steinmetz, Leiter des RAVE-Projekts. „Insbesondere zeigt es sich, dass die komplexen, für die DIB verantwortlichen Moleküle auch weiter von der galaktischen Ebene entfernt zu finden sind als dies etwa für den interstellaren Staub der Fall ist“.

Geleitet wurde die in Science publizierte Analyse von Janez Kos und Tomaz Zwitter von der Universität Ljubljana in Slowenien.

RAVE ist ein multinationales Projekt unter Führung des Leibniz-Instituts für Astrophysik Potsdam (AIP), an dem sich Wissenschaftler aus Australien, Deutschland, Frankreich, Großbritannien, Italien, Kanada, den Niederlanden, Slowenien und den USA beteiligen. Die Finanzierung von RAVE, die einen umfangreichen Zugang zum Teleskop und Instrument ermöglicht, wird von den teilnehmenden Institutionen und von den jeweiligen nationalen Organisationen zur Forschungsförderung geleistet.

Wissenschaftlicher Kontakt:
Prof. Dr. Matthias Steinmetz, +49 331 7499 381, msteinmetz@aip.de

Kontakt zu Erstautoren der Publikation:
Janez Kos, University of Ljubljana, janez.kos@fmf.uni-lj.si, +386 1 4766 507

Pressekontakt:
Dr. Gabriele Schönherr / Kerstin Mork , +49 331 7499 469, presse@aip.de

Das Leibniz-Institut für Astrophysik Potsdam (AIP) widmet sich astrophysikalischen Fragen, die von der Untersuchung unserer Sonne bis zur Entwicklung des Kosmos reichen. Forschungsschwerpunkte sind dabei kosmische Magnetfelder und extragalaktische Astrophysik sowie die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.aip.de Meldung inkl. Link zum Science-Paper
http://www.rave-survey.aip.de/rave/ The Radial Velocity Experiment (RAVE)
http://www.rave-survey.aip.de/rave/movies/ravedr4_anim.mp4 Der Film zeigt die Verteilung der mit RAVE analysierten Sterne der Milchstraße (4. Datenrelease, Kordopatis et al. 2013) im Vergleich zu einem Modell der Scheibe der Milchstraße. Blau: Zwergsterne, Rot: sehr viel hellere Riesensterne (Credit: Gal Matijevic (visualisation), The RAVE Collaboration).

Kerstin Mork | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics