Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Randeffekte in Quantensystem simuliert

25.09.2015

Forscher aus Florenz und Innsbruck haben in einem atomaren Quantengas ein physikalisches Phänomen simuliert, das an den Rändern mancher Materialien zu beobachten ist: sogenannte chirale Ströme. Die Forscher berichten nun in der Fachzeitschrift Science über das Experiment, das die Tür für die weitere Aufklärung exotischer Erscheinungen in Festkörpern öffnet.

Die Physik von Festkörpern gibt auch heute noch viele Rätsel auf. Neue Möglichkeiten ergeben sich durch Fortschritte in der experimentellen Quantenphysik.


Der Innsbrucker Theoretiker Marcello Dalmonte

Uni Innsbruck

Insbesondere haben sich ultrakalte Atome, die in optischen Gittern gefangen und sehr gut kontrolliert werden können, als ideales Werkzeug für die Untersuchung von physikalischen Phänomenen in Festkörpern erwiesen.

Eines dieser Phänomene wird im Zusammenhang mit dem Quanten-Hall-Effekt beobachtet: Werden bestimmte Materialen einem starken Magnetfeld ausgesetzt, können Elektronen an den Rändern keine ungestörten Kreisbahnen durchlaufen, stoßen an den Rand und werden dort reflektiert. Dadurch beschreiben sie „hüpfende Umlaufbahnen“.

Als makroskopische Konsequenz sind an den Rändern von Platten dieser Materialien sogenannte „chirale Ströme“ zu beobachten, die an den gegenüberliegenden Rändern in gegenläufige Richtungen fließen.

„Man kann sich das wie einen Fluss vorstellen, in dem die Fische am einen Ufer nach rechts und am anderen Ufer nach links schwimmen“, beschreibt der Theoretiker Marcello Dalmonte aus der Arbeitsgruppe von Peter Zoller am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften und am Institut für Theoretische Physik der Universität Innsbruck das Phänomen.

Forscher lassen Atome hüpfen

Das Team um Peter Zoller hatte bereits vor zehn Jahren einen Vorschlag gemacht, wie chirale Ströme mit neutralen Atomen simuliert werden können. Diese Idee haben nun Physiker am European Laboratory for Nonlinear Spectroscopy (LENS) in Florenz gemeinsam mit den Innsbrucker Theoretikern aufgegriffen und umgesetzt.

Die Wissenschaftler fangen dazu im Labor ein stark abgekühltes Gas aus Ytterbium-Atomen in einem aus Laserstrahlen gebildeten, optischen Gitter. Weil sich die Struktur von Platten im Experiment nur sehr schwer nachbilden lässt, haben die Physiker zu einem weiteren Trick gegriffen, den Forscher am Institute of Photonic Sciences in Barcelona entwickelt haben: Sie nutzen für ihre Messungen jeweils eindimensionale Ketten von Atomen und bilden die zweite Dimension synthetisch nach. Dazu verwenden sie zwei oder drei interne Zustände, in die die Atome mit Hilfe von Lasern versetzt werden.

„Theoretisch gesprochen ist diese Springen in andere interne Zustände genau das Gleiche wie das geometrische Springen der Elektronen in den Randzonen eines Festkörpers“, erklärt Marcello Dalmonte. Gemeinsam mit Marie Rider und Peter Zoller hat er theoretische Vorarbeiten für das Experiment geleistet und wichtige Hinweise gegeben, wie das Phänomen messtechnisch erfasst werden kann.

Die nun in der Fachzeitschrift Science veröffentlichten Messergebnisse zeigen, dass sich die Teilchen auf einer Ebene mehrheitlich nach rechts und auf einer anderen Ebene mehrheitlich nach links bewegen. „Dieses Verhalten ist sehr ähnlich den aus der Festkörperphysik bekannten chiralen Strömen“, sagt Dalmonte.

Mit der Simulation dieser exotischen Effekte eröffnen die Forscher die Möglichkeit zur Untersuchung neuer physikalischer Phänomene. So werden im Zusammenhang mit dem Quanten-Hall-Effekt zum Beispiel Anyonen intensiv erforscht. Diese exotischen Quasiteilchen werden auch als Grundlage für topologische Quantencomputer gehandelt.

Unterstützt wurden die Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF, dem europäischen Wissenschaftsrat ERC und der Europäischen Union.

Publikation: Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, L. Fallani. Science, 25. September 2015 (doi: 10.1126/science.aaa8736)

Kontakt:
Marcello Dalmonte
Institut für Theoretische Physik
Universität Innsbruck und
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4792
E-Mail: marcello.dalmonte@uibk.ac.at

Christian Flatz
Public Relations
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.uibk.ac.at/th-physik/qo/ - Arbeitsgruppe Quantenoptik
http://www.uibk.ac.at/th-physik/ - Institut für Theoretische Physik, Universität Innsbruck
http://iqoqi.at/ - Institut für Quantenoptik und Quanteninformation, ÖAW
http://www.lens.unifi.it/ - European Laboratory for Nonlinear Spectroscopy (LENS)

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften