Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raman-Spektroskopie mit zwei Laser-Frequenzkämmen: Am Herzschlag von Molekülen

17.10.2013
Für die schnelle Identifizierung komplexer Moleküle erproben Forscher am Max-Planck-Institut für Quantenoptik erfolgreich die Raman-Spektroskopie mit zwei Laser-Frequenzkämmen.

Ein Team von Wissenschaftlern um Prof. Theodor W. Hänsch and Dr. Nathalie Picqué aus der Abteilung Laser-Spektroskopie am Max-Planck-Institut für Quantenoptik, in Kooperation mit der Ludwig-Maximilians-Universität München und dem Institut des Sciences Moléculaires d’Orsay (Frankreich), hat eine neue Technik entwickelt, die eine schnelle Identifizierung verschiedenster komplexer Moleküle unter dem Mikroskop erlaubt.


Abbildung: Am Herzschlag von Molekülen (in einer Flüssigkeit). MPQ, Abt. Laserspektroskopie

Ihre Technik kohärenter Raman-Spektroskopie mit zwei Laserfrequenzkämmen ist ein großer Schritt in Richtung des „heiligen Grals“: der biomelekularen Abbildung in Echtzeit ohne Färbung der Proben (Nature 502, 17. Oktober 2013).

Wie beeinflussen Medikamente eine lebende Zelle? In welcher Hinsicht verändern Botenmoleküle den Zellstoffwechsel? Diese Fragen sind derzeit nur schwer zu beantworten, da Zellen hochkomplexe „chemische Fabriken“ darstellen, die unentwegt unterschiedlichste Moleküle synthetisieren, konsumieren und metabolisieren. Biologen nutzen derzeit spezielle fluoreszente Farbstoffe um bestimmte Proteine in den Zellen zu markieren, so dass sie diese unter dem Mikroskop erkennen und unterscheiden können. Doch diese Farbstoffe können ihrerseits die Zellfunktionen verändern. Viele biologisch und technisch relevante Moleküle besitzen charakteristische Absorptionsspektren im mittleren Infrarot, bei diesen großen Wellenlängen lässt sich jedoch keine gute räumliche Auflösung erzielen.

Um Moleküle ohne solche Markierungen hochselektiv und mit guter räumlicher Auflösung zu identifizieren, dient seit langem die kohärente Raman-Spektroskopie als Alternative. Raman-Spektroskopie erlaubt es, tiefliegende oder grundlegende vibronische Energieniveaus der zu identifizierenden Moleküle zu untersuchen, und bietet so Zugang zu derselben Information wie die Spektroskopie im mittleren Infrarot. Im Gegensatz zu dieser verwendet nichtlineare Raman-Spektroskopie aber sichtbares oder nah-infrarotes Licht, was eine gute räumliche Auflösung sowie eine dreidimensionale Schnittdarstellung der zu untersuchenden Probe erlaubt. Doch um Bilder möglichst schnell zu liefern, konzentrieren sich die bislang üblichen Raster-Raman-Mikroskope meistens auf ein bestimmtes spektrales Element der ausgewählten Molekülsorte.

Für die Analyse einer komplexen Mischung von Molekülen mit möglicherweise unbekannten Komponenten wird jedoch für jeden Bildpixel ein vollständiges Raman-Spektrum benötigt. Bislang verfügbare Techniken waren dafür viel zu langsam. Den MPQ-Wissenschaftlern ist es jetzt gelungen, vollständige Raman-Spektren mit guter Auflösung auf einer Zeitskala von Mikrosekunden zu messen. Der Schlüssel zu diesem Erfolg war der Einsatz von zwei Laser-Frequenzkämmen. Der Trick dabei bestand darin, die Zeitdifferenz zwischen zwei Laser-Pulsen, einem Anregungs- und einem Abfragepuls, schnell zu verändern, ohne die Verwendung beweglicher Teile, und gleichzeitig Schwankungen in der Intensität des kohärenten Anti-Stokes-Signals zu messen, die mit der Frequenz der molekularen Vibrationschwingungen moduliert sind. Dies ermöglichte die schnelle Aufzeichnung eines breitbandigen Raman-Spektrums, mit nur einem einzigen Photodetektor.

„Wenn wir den Detektor durch eine Kamera ersetzen würden, würde dies eine „hyperspektrale“ Bildgebung in Echtzeit ermöglichen“, erklärt Takuro Ideguchi, Doktorand am Experiment. „Denn dann könnten wir für jeden Pixel der Bildebene ein vollständiges Raman-Spektrum aufzeichnen.“ Die Wissenschaftler erwarten, dass ihr „proof-of-principle“-Experiment neue Wege ermöglichen wird für bildgebende und spektrokopische Verfahren. Mit einer Weiterentwicklung ihres Systems planen sie, das Potential ihrer Technik für die Untersuchung biologischer Proben zu erkunden.

„Es ist sehr spannend, dass ein ursprünglich für die Frequenzmetrologie entwickeltes Werkzeug wie der Frequenzkamm nun interdisziplinäre Anwendungen findet, die weit über seinen ursprünglichen Zweck hinausgehen“, resümiert Simon Holzner, der ebenfalls im Rahmen dieser Forschungsarbeit promoviert. [NP]

Originalveröffentlichung:
T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué and T.W. Hänsch
Coherent Raman spectro-imaging with laser frequency combs
Nature 502, 355-358, 17. Oktober 2013, DOI: 10.1038/nature12607
Kontakt:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans Kopfermann-Straße 1
85748 Garching
Tel: +49 (0) 89 32905 -712
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institut für Quantenoptik
Tel..: +49 (0) 89 32905 -290
E-Mail: nathalie.picque@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 32 905 -213
Fax: +49 (0) 89 32 905 -200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie