Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raman-Spektroskopie mit zwei Laser-Frequenzkämmen: Am Herzschlag von Molekülen

17.10.2013
Für die schnelle Identifizierung komplexer Moleküle erproben Forscher am Max-Planck-Institut für Quantenoptik erfolgreich die Raman-Spektroskopie mit zwei Laser-Frequenzkämmen.

Ein Team von Wissenschaftlern um Prof. Theodor W. Hänsch and Dr. Nathalie Picqué aus der Abteilung Laser-Spektroskopie am Max-Planck-Institut für Quantenoptik, in Kooperation mit der Ludwig-Maximilians-Universität München und dem Institut des Sciences Moléculaires d’Orsay (Frankreich), hat eine neue Technik entwickelt, die eine schnelle Identifizierung verschiedenster komplexer Moleküle unter dem Mikroskop erlaubt.


Abbildung: Am Herzschlag von Molekülen (in einer Flüssigkeit). MPQ, Abt. Laserspektroskopie

Ihre Technik kohärenter Raman-Spektroskopie mit zwei Laserfrequenzkämmen ist ein großer Schritt in Richtung des „heiligen Grals“: der biomelekularen Abbildung in Echtzeit ohne Färbung der Proben (Nature 502, 17. Oktober 2013).

Wie beeinflussen Medikamente eine lebende Zelle? In welcher Hinsicht verändern Botenmoleküle den Zellstoffwechsel? Diese Fragen sind derzeit nur schwer zu beantworten, da Zellen hochkomplexe „chemische Fabriken“ darstellen, die unentwegt unterschiedlichste Moleküle synthetisieren, konsumieren und metabolisieren. Biologen nutzen derzeit spezielle fluoreszente Farbstoffe um bestimmte Proteine in den Zellen zu markieren, so dass sie diese unter dem Mikroskop erkennen und unterscheiden können. Doch diese Farbstoffe können ihrerseits die Zellfunktionen verändern. Viele biologisch und technisch relevante Moleküle besitzen charakteristische Absorptionsspektren im mittleren Infrarot, bei diesen großen Wellenlängen lässt sich jedoch keine gute räumliche Auflösung erzielen.

Um Moleküle ohne solche Markierungen hochselektiv und mit guter räumlicher Auflösung zu identifizieren, dient seit langem die kohärente Raman-Spektroskopie als Alternative. Raman-Spektroskopie erlaubt es, tiefliegende oder grundlegende vibronische Energieniveaus der zu identifizierenden Moleküle zu untersuchen, und bietet so Zugang zu derselben Information wie die Spektroskopie im mittleren Infrarot. Im Gegensatz zu dieser verwendet nichtlineare Raman-Spektroskopie aber sichtbares oder nah-infrarotes Licht, was eine gute räumliche Auflösung sowie eine dreidimensionale Schnittdarstellung der zu untersuchenden Probe erlaubt. Doch um Bilder möglichst schnell zu liefern, konzentrieren sich die bislang üblichen Raster-Raman-Mikroskope meistens auf ein bestimmtes spektrales Element der ausgewählten Molekülsorte.

Für die Analyse einer komplexen Mischung von Molekülen mit möglicherweise unbekannten Komponenten wird jedoch für jeden Bildpixel ein vollständiges Raman-Spektrum benötigt. Bislang verfügbare Techniken waren dafür viel zu langsam. Den MPQ-Wissenschaftlern ist es jetzt gelungen, vollständige Raman-Spektren mit guter Auflösung auf einer Zeitskala von Mikrosekunden zu messen. Der Schlüssel zu diesem Erfolg war der Einsatz von zwei Laser-Frequenzkämmen. Der Trick dabei bestand darin, die Zeitdifferenz zwischen zwei Laser-Pulsen, einem Anregungs- und einem Abfragepuls, schnell zu verändern, ohne die Verwendung beweglicher Teile, und gleichzeitig Schwankungen in der Intensität des kohärenten Anti-Stokes-Signals zu messen, die mit der Frequenz der molekularen Vibrationschwingungen moduliert sind. Dies ermöglichte die schnelle Aufzeichnung eines breitbandigen Raman-Spektrums, mit nur einem einzigen Photodetektor.

„Wenn wir den Detektor durch eine Kamera ersetzen würden, würde dies eine „hyperspektrale“ Bildgebung in Echtzeit ermöglichen“, erklärt Takuro Ideguchi, Doktorand am Experiment. „Denn dann könnten wir für jeden Pixel der Bildebene ein vollständiges Raman-Spektrum aufzeichnen.“ Die Wissenschaftler erwarten, dass ihr „proof-of-principle“-Experiment neue Wege ermöglichen wird für bildgebende und spektrokopische Verfahren. Mit einer Weiterentwicklung ihres Systems planen sie, das Potential ihrer Technik für die Untersuchung biologischer Proben zu erkunden.

„Es ist sehr spannend, dass ein ursprünglich für die Frequenzmetrologie entwickeltes Werkzeug wie der Frequenzkamm nun interdisziplinäre Anwendungen findet, die weit über seinen ursprünglichen Zweck hinausgehen“, resümiert Simon Holzner, der ebenfalls im Rahmen dieser Forschungsarbeit promoviert. [NP]

Originalveröffentlichung:
T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué and T.W. Hänsch
Coherent Raman spectro-imaging with laser frequency combs
Nature 502, 355-358, 17. Oktober 2013, DOI: 10.1038/nature12607
Kontakt:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans Kopfermann-Straße 1
85748 Garching
Tel: +49 (0) 89 32905 -712
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institut für Quantenoptik
Tel..: +49 (0) 89 32905 -290
E-Mail: nathalie.picque@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 32 905 -213
Fax: +49 (0) 89 32 905 -200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik