Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafte Radioblitze am Himmel

05.07.2013
Ein internationales Forscherteam mit Wissenschaftlern vom Bonner MPIfR hat Ausbrüche von Radiowellen entdeckt, die ihren Ursprung in Milliarden von Lichtjahren Entfernung haben.

Da jede irdische Ursache ausgeschlossen werden kann, bringen diese Strahlungsausbrüche die Experten über die Art ihrer Entstehung zum Grübeln. Ihre Helligkeit und Abschätzungen für ihre Entfernung legen nahe, dass die Ausbrüche sich in kosmologischer Distanz abspielen, in einem gerade mal zwischen sechs und neun Milliarden Jahre alten universum. Die dafür verantwortliche Ursache ist noch ein Rätsel; sicher ist aber, dass man diese Blitze in der Zukunft zur Untersuchung des intergalaktischen Raums verwenden kann.


Künstlerische Darstellung eines einzelnen Radioblitzes am Nachthimmel. Die vier hier beschriebenen Quellen mit kurzzeitigen Radiostrahlungsausbrüchen (FRBs) wurden mit dem CSIRO-Parkes-Radioteleskop in Australien im Rahmen des “High Time Resolution Universe” (HTRU) Projekts aufgefunden.
winburne Astronomy Productions, mit dem CSIRO-Parkes-Radioteleskop und astronomy.fas.harvard.edu/skymaps/halpha (Hintergrundbild)


Radiokarte des gesamten Himmels in galaktischen Koordinaten mit den im Rahmen des „High Time Resolution Universe Survey“ (HTRU) neu entdeckten Objekten als schwarze Punkte dargestellt. Die Positionen der vier Quellen mit kurzzeitigen Radioausbrüchen (FRBs) sind als rote Sterne dargestellt. MPIfR/C. Ng

Vier kurzzeitige Radiostrahlungsausbrüche (Fast Radio Bursts, FRBs) von nur wenigen Millisekunden Dauer wurden am Südhimmel bei hohen galaktischen Breiten entdeckt.

Die extrem kurze Zeitdauer und die abgeleitete große Entfernung lassen darauf schließen, dass diese Ausbrüche durch sehr energiereiche Ereignisse in kosmologischer Entfernung im Universum verursacht werden. Das könnten zum Beispiel zwei miteinander verschmelzende Neutronensterne sein, oder der Kollaps eines sterbenden Sterns, oder auch ein Stern, der durch ein Schwarzes Loch verschluckt wird.

Hier kommen nur extreme kosmische Ereignisse in Frage, und es sind riesige Mengen von Masse oder Energie als Ursache für die Strahlungsausbrüche beteiligt. „Vor sechs Jahren wurde zum ersten Mal überhaupt ein derartiger Strahlungsausbruch im Radiobereich beobachtet. Aber damals konnte sich keiner sicher sein, was das war, oder ob es sich überhaupt um ein kosmisches Signal handelt. So haben wir in den letzten vier Jahren damit begonnen, nach weiteren solchen explosiven Radioausbrüchen von kurzer Dauer zu suchen“, sagt Dan Thornton, Doktorand an der Universität Manchester und der „Commonwealth Scientific and Industrial Research Organisation“ (CSIRO) in Sydney/Australien. „In unserer Veröffentlichung beschreiben wir gleich vier weitere Ausbrüche dieser Art und können damit jeden Zweifel ausräumen, dass sie echt sind. Und beim am weitesten entfernten Ereignis erreicht uns die Strahlung nach einer Lichtlaufzeit von etwa acht Milliarden Jahren!“

Die Ergebnisse basieren auf der Untersuchung eines winzigen Bruchteils vom ganzen Himmel. Sie lassen vermuten, dass alle 10 Sekunden ein Ereignis dieser Art irgendwo am Himmel gefunden werden könnte. „Die Strahlungsausbrüche sind 10mal kürzer als ein Blinzeln mit unseren Augen. Mit unseren gegenwärtigen Teleskopen müssen wir schon Glück haben, dass wir zur richtigen Zeit in die richtige Richtung am Himmel blicken“, sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn und Professor an der Universität Manchester. „Sobald wir den ganzen Himmel simultan mit „Radioaugen“ erfassen können, werden wir jeden Tag neue Radioblitze finden.“

Das Forscherteam hat die vier Radioblitze mit dem CSIRO-64m-Radioteleskop bei Parkes/Australien am Südhimmel gefunden. Matthew Bailes, Professor an der Swinburne-Universität (Melbourne/Australien), nimmt an, dass diese Strahlungsblitze am ehesten auf heftige Explosionen bei Neutronensternen mit den stärksten bekannten Magnetfeldern zurückgeführt werden können. Diese sogenannten Magnetare haben Magnetfelder bis zu 100 Milliarden Tesla, etwa 1000mal stärker als bei normalen Neutronensternen. „Magnetare können in nur einer Millisekunde mehr Energie abstrahlen als unsere Sonne in 300.000 Jahen, und sie sind heiße Kandidaten, um diese Ausbrüche zu erklären“, sagt Matthew Bailes.

Die Forscher möchten ihre Ergebnisse auch dazu nutzen, die Eigenschaften des Raumes in Richtung der beobachteten Strahlungsausbrüche zu untersuchen. „Wir sind uns bezüglich des intergalaktischen Raumes und seiner Bestandteile noch gar nicht so sicher“, sagt Dr. Ben Stappers von der Universität Manchester. „Wir können die beobachteten Strahlungsausbrüche als Messsonden nutzen, um einiges über den dazwischenliegenden Raum und die fehlende Materie im Universum zu erfahren.“

„Wir haben gerade damit begonnen, mit weiteren Radioteleskopen wie unserem 100-m-Teleskop in Effelsberg die Suche auf den gesamten Himmel auszudehnen“, fügt David Champion vom MPIfR hinzu. „Wir möchten diese Strahlungsausbrüche auch gern in Echtzeit erfassen. Mit zukünftigen Teleskopen wie dem „Square Kilometre Array“ (SKA) werden wir größere Bereiche des Himmels systematisch erfassen und damit noch eine wesentlich größere Anzahl dieser Objekte entdecken.“

Das Forscherteam setzt sich zusammen aus Wissenschaftlern des Jodrell-Bank-Observatoriums der Universität Manchester/Großbritannien, dem Max-Planck Institut für Radioastronomie in Bonn, Cagliari-Observatorium und -Universität in Sardinien/Italien, der Swinburne University of Technology in Melbourne/Australien, der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney/Australien, dem Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) und dem NASA Jet Propulsion Laboratory in Kalifornien/U.S.A.

Originalveröffentlichung:
“A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in der aktuellen Ausgabe des Wissenschaftsmagazins “Science” Vol. 340, Issue 6141 (5. Juli 2013)

Lokaler Kontakt:

Prof. Dr. Michael Kramer,
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
E-mail: champion@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-science-jul2013-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie