Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafte Radioblitze am Himmel

05.07.2013
Ein internationales Forscherteam mit Wissenschaftlern vom Bonner MPIfR hat Ausbrüche von Radiowellen entdeckt, die ihren Ursprung in Milliarden von Lichtjahren Entfernung haben.

Da jede irdische Ursache ausgeschlossen werden kann, bringen diese Strahlungsausbrüche die Experten über die Art ihrer Entstehung zum Grübeln. Ihre Helligkeit und Abschätzungen für ihre Entfernung legen nahe, dass die Ausbrüche sich in kosmologischer Distanz abspielen, in einem gerade mal zwischen sechs und neun Milliarden Jahre alten universum. Die dafür verantwortliche Ursache ist noch ein Rätsel; sicher ist aber, dass man diese Blitze in der Zukunft zur Untersuchung des intergalaktischen Raums verwenden kann.


Künstlerische Darstellung eines einzelnen Radioblitzes am Nachthimmel. Die vier hier beschriebenen Quellen mit kurzzeitigen Radiostrahlungsausbrüchen (FRBs) wurden mit dem CSIRO-Parkes-Radioteleskop in Australien im Rahmen des “High Time Resolution Universe” (HTRU) Projekts aufgefunden.
winburne Astronomy Productions, mit dem CSIRO-Parkes-Radioteleskop und astronomy.fas.harvard.edu/skymaps/halpha (Hintergrundbild)


Radiokarte des gesamten Himmels in galaktischen Koordinaten mit den im Rahmen des „High Time Resolution Universe Survey“ (HTRU) neu entdeckten Objekten als schwarze Punkte dargestellt. Die Positionen der vier Quellen mit kurzzeitigen Radioausbrüchen (FRBs) sind als rote Sterne dargestellt. MPIfR/C. Ng

Vier kurzzeitige Radiostrahlungsausbrüche (Fast Radio Bursts, FRBs) von nur wenigen Millisekunden Dauer wurden am Südhimmel bei hohen galaktischen Breiten entdeckt.

Die extrem kurze Zeitdauer und die abgeleitete große Entfernung lassen darauf schließen, dass diese Ausbrüche durch sehr energiereiche Ereignisse in kosmologischer Entfernung im Universum verursacht werden. Das könnten zum Beispiel zwei miteinander verschmelzende Neutronensterne sein, oder der Kollaps eines sterbenden Sterns, oder auch ein Stern, der durch ein Schwarzes Loch verschluckt wird.

Hier kommen nur extreme kosmische Ereignisse in Frage, und es sind riesige Mengen von Masse oder Energie als Ursache für die Strahlungsausbrüche beteiligt. „Vor sechs Jahren wurde zum ersten Mal überhaupt ein derartiger Strahlungsausbruch im Radiobereich beobachtet. Aber damals konnte sich keiner sicher sein, was das war, oder ob es sich überhaupt um ein kosmisches Signal handelt. So haben wir in den letzten vier Jahren damit begonnen, nach weiteren solchen explosiven Radioausbrüchen von kurzer Dauer zu suchen“, sagt Dan Thornton, Doktorand an der Universität Manchester und der „Commonwealth Scientific and Industrial Research Organisation“ (CSIRO) in Sydney/Australien. „In unserer Veröffentlichung beschreiben wir gleich vier weitere Ausbrüche dieser Art und können damit jeden Zweifel ausräumen, dass sie echt sind. Und beim am weitesten entfernten Ereignis erreicht uns die Strahlung nach einer Lichtlaufzeit von etwa acht Milliarden Jahren!“

Die Ergebnisse basieren auf der Untersuchung eines winzigen Bruchteils vom ganzen Himmel. Sie lassen vermuten, dass alle 10 Sekunden ein Ereignis dieser Art irgendwo am Himmel gefunden werden könnte. „Die Strahlungsausbrüche sind 10mal kürzer als ein Blinzeln mit unseren Augen. Mit unseren gegenwärtigen Teleskopen müssen wir schon Glück haben, dass wir zur richtigen Zeit in die richtige Richtung am Himmel blicken“, sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn und Professor an der Universität Manchester. „Sobald wir den ganzen Himmel simultan mit „Radioaugen“ erfassen können, werden wir jeden Tag neue Radioblitze finden.“

Das Forscherteam hat die vier Radioblitze mit dem CSIRO-64m-Radioteleskop bei Parkes/Australien am Südhimmel gefunden. Matthew Bailes, Professor an der Swinburne-Universität (Melbourne/Australien), nimmt an, dass diese Strahlungsblitze am ehesten auf heftige Explosionen bei Neutronensternen mit den stärksten bekannten Magnetfeldern zurückgeführt werden können. Diese sogenannten Magnetare haben Magnetfelder bis zu 100 Milliarden Tesla, etwa 1000mal stärker als bei normalen Neutronensternen. „Magnetare können in nur einer Millisekunde mehr Energie abstrahlen als unsere Sonne in 300.000 Jahen, und sie sind heiße Kandidaten, um diese Ausbrüche zu erklären“, sagt Matthew Bailes.

Die Forscher möchten ihre Ergebnisse auch dazu nutzen, die Eigenschaften des Raumes in Richtung der beobachteten Strahlungsausbrüche zu untersuchen. „Wir sind uns bezüglich des intergalaktischen Raumes und seiner Bestandteile noch gar nicht so sicher“, sagt Dr. Ben Stappers von der Universität Manchester. „Wir können die beobachteten Strahlungsausbrüche als Messsonden nutzen, um einiges über den dazwischenliegenden Raum und die fehlende Materie im Universum zu erfahren.“

„Wir haben gerade damit begonnen, mit weiteren Radioteleskopen wie unserem 100-m-Teleskop in Effelsberg die Suche auf den gesamten Himmel auszudehnen“, fügt David Champion vom MPIfR hinzu. „Wir möchten diese Strahlungsausbrüche auch gern in Echtzeit erfassen. Mit zukünftigen Teleskopen wie dem „Square Kilometre Array“ (SKA) werden wir größere Bereiche des Himmels systematisch erfassen und damit noch eine wesentlich größere Anzahl dieser Objekte entdecken.“

Das Forscherteam setzt sich zusammen aus Wissenschaftlern des Jodrell-Bank-Observatoriums der Universität Manchester/Großbritannien, dem Max-Planck Institut für Radioastronomie in Bonn, Cagliari-Observatorium und -Universität in Sardinien/Italien, der Swinburne University of Technology in Melbourne/Australien, der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney/Australien, dem Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) und dem NASA Jet Propulsion Laboratory in Kalifornien/U.S.A.

Originalveröffentlichung:
“A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in der aktuellen Ausgabe des Wissenschaftsmagazins “Science” Vol. 340, Issue 6141 (5. Juli 2013)

Lokaler Kontakt:

Prof. Dr. Michael Kramer,
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
E-mail: champion@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-science-jul2013-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten