Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafte Radioblitze am Himmel

05.07.2013
Ein internationales Forscherteam mit Wissenschaftlern vom Bonner MPIfR hat Ausbrüche von Radiowellen entdeckt, die ihren Ursprung in Milliarden von Lichtjahren Entfernung haben.

Da jede irdische Ursache ausgeschlossen werden kann, bringen diese Strahlungsausbrüche die Experten über die Art ihrer Entstehung zum Grübeln. Ihre Helligkeit und Abschätzungen für ihre Entfernung legen nahe, dass die Ausbrüche sich in kosmologischer Distanz abspielen, in einem gerade mal zwischen sechs und neun Milliarden Jahre alten universum. Die dafür verantwortliche Ursache ist noch ein Rätsel; sicher ist aber, dass man diese Blitze in der Zukunft zur Untersuchung des intergalaktischen Raums verwenden kann.


Künstlerische Darstellung eines einzelnen Radioblitzes am Nachthimmel. Die vier hier beschriebenen Quellen mit kurzzeitigen Radiostrahlungsausbrüchen (FRBs) wurden mit dem CSIRO-Parkes-Radioteleskop in Australien im Rahmen des “High Time Resolution Universe” (HTRU) Projekts aufgefunden.
winburne Astronomy Productions, mit dem CSIRO-Parkes-Radioteleskop und astronomy.fas.harvard.edu/skymaps/halpha (Hintergrundbild)


Radiokarte des gesamten Himmels in galaktischen Koordinaten mit den im Rahmen des „High Time Resolution Universe Survey“ (HTRU) neu entdeckten Objekten als schwarze Punkte dargestellt. Die Positionen der vier Quellen mit kurzzeitigen Radioausbrüchen (FRBs) sind als rote Sterne dargestellt. MPIfR/C. Ng

Vier kurzzeitige Radiostrahlungsausbrüche (Fast Radio Bursts, FRBs) von nur wenigen Millisekunden Dauer wurden am Südhimmel bei hohen galaktischen Breiten entdeckt.

Die extrem kurze Zeitdauer und die abgeleitete große Entfernung lassen darauf schließen, dass diese Ausbrüche durch sehr energiereiche Ereignisse in kosmologischer Entfernung im Universum verursacht werden. Das könnten zum Beispiel zwei miteinander verschmelzende Neutronensterne sein, oder der Kollaps eines sterbenden Sterns, oder auch ein Stern, der durch ein Schwarzes Loch verschluckt wird.

Hier kommen nur extreme kosmische Ereignisse in Frage, und es sind riesige Mengen von Masse oder Energie als Ursache für die Strahlungsausbrüche beteiligt. „Vor sechs Jahren wurde zum ersten Mal überhaupt ein derartiger Strahlungsausbruch im Radiobereich beobachtet. Aber damals konnte sich keiner sicher sein, was das war, oder ob es sich überhaupt um ein kosmisches Signal handelt. So haben wir in den letzten vier Jahren damit begonnen, nach weiteren solchen explosiven Radioausbrüchen von kurzer Dauer zu suchen“, sagt Dan Thornton, Doktorand an der Universität Manchester und der „Commonwealth Scientific and Industrial Research Organisation“ (CSIRO) in Sydney/Australien. „In unserer Veröffentlichung beschreiben wir gleich vier weitere Ausbrüche dieser Art und können damit jeden Zweifel ausräumen, dass sie echt sind. Und beim am weitesten entfernten Ereignis erreicht uns die Strahlung nach einer Lichtlaufzeit von etwa acht Milliarden Jahren!“

Die Ergebnisse basieren auf der Untersuchung eines winzigen Bruchteils vom ganzen Himmel. Sie lassen vermuten, dass alle 10 Sekunden ein Ereignis dieser Art irgendwo am Himmel gefunden werden könnte. „Die Strahlungsausbrüche sind 10mal kürzer als ein Blinzeln mit unseren Augen. Mit unseren gegenwärtigen Teleskopen müssen wir schon Glück haben, dass wir zur richtigen Zeit in die richtige Richtung am Himmel blicken“, sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn und Professor an der Universität Manchester. „Sobald wir den ganzen Himmel simultan mit „Radioaugen“ erfassen können, werden wir jeden Tag neue Radioblitze finden.“

Das Forscherteam hat die vier Radioblitze mit dem CSIRO-64m-Radioteleskop bei Parkes/Australien am Südhimmel gefunden. Matthew Bailes, Professor an der Swinburne-Universität (Melbourne/Australien), nimmt an, dass diese Strahlungsblitze am ehesten auf heftige Explosionen bei Neutronensternen mit den stärksten bekannten Magnetfeldern zurückgeführt werden können. Diese sogenannten Magnetare haben Magnetfelder bis zu 100 Milliarden Tesla, etwa 1000mal stärker als bei normalen Neutronensternen. „Magnetare können in nur einer Millisekunde mehr Energie abstrahlen als unsere Sonne in 300.000 Jahen, und sie sind heiße Kandidaten, um diese Ausbrüche zu erklären“, sagt Matthew Bailes.

Die Forscher möchten ihre Ergebnisse auch dazu nutzen, die Eigenschaften des Raumes in Richtung der beobachteten Strahlungsausbrüche zu untersuchen. „Wir sind uns bezüglich des intergalaktischen Raumes und seiner Bestandteile noch gar nicht so sicher“, sagt Dr. Ben Stappers von der Universität Manchester. „Wir können die beobachteten Strahlungsausbrüche als Messsonden nutzen, um einiges über den dazwischenliegenden Raum und die fehlende Materie im Universum zu erfahren.“

„Wir haben gerade damit begonnen, mit weiteren Radioteleskopen wie unserem 100-m-Teleskop in Effelsberg die Suche auf den gesamten Himmel auszudehnen“, fügt David Champion vom MPIfR hinzu. „Wir möchten diese Strahlungsausbrüche auch gern in Echtzeit erfassen. Mit zukünftigen Teleskopen wie dem „Square Kilometre Array“ (SKA) werden wir größere Bereiche des Himmels systematisch erfassen und damit noch eine wesentlich größere Anzahl dieser Objekte entdecken.“

Das Forscherteam setzt sich zusammen aus Wissenschaftlern des Jodrell-Bank-Observatoriums der Universität Manchester/Großbritannien, dem Max-Planck Institut für Radioastronomie in Bonn, Cagliari-Observatorium und -Universität in Sardinien/Italien, der Swinburne University of Technology in Melbourne/Australien, der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney/Australien, dem Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) und dem NASA Jet Propulsion Laboratory in Kalifornien/U.S.A.

Originalveröffentlichung:
“A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in der aktuellen Ausgabe des Wissenschaftsmagazins “Science” Vol. 340, Issue 6141 (5. Juli 2013)

Lokaler Kontakt:

Prof. Dr. Michael Kramer,
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
E-mail: champion@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-science-jul2013-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics