Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel Antimaterie: Spurensuche mit hochintegriertem Teilchensensor

09.11.2015

In München wurde kürzlich ein hochempfindlicher Sensor zur präzisen Vermessung von Teilchenspuren vorgestellt. Es handelt sich um das erste Modul für den Vertex-Detektor des Belle II-Experiments am japanischen Beschleunigerzentrum KEK. Der Detektor soll ab 2017 zum Einsatz kommen und Kollisionen von Elektronen und deren Antiteilchen, den Positronen, aufzeichnen. Mit diesen Experimenten gehen Wissenschaftler der Frage nach, warum es im heutigen Universum kein nennenswertes Vorkommen von Antimaterie gibt.

Der Sensor ist eine Entwicklung des Halbleiterlabors der Max Planck-Gesellschaft (MPG). Der Belle II-Vertex-Detektor entsteht in einer internationalen Kooperation unter Leitung des Max-Planck-Instituts für Physik.




Jetzt fertiggestellt: Das erste, voll funktionsfähige Sensormodul des Vertex-Detektors im Belle II-Experiment

L. Andricek/HLL@MPG

Im Experiment bringen Wissenschaftler Elektronen und Positronen zur Kollision und werten die Zerfallspuren der produzierten schweren Mesonen und deren Antiteilchen aus. "Wir suchen dabei nach winzigen Unterschieden. Dafür ist die präzise Vermessung des Zerfallsortes – auch als Vertex bezeichnet – entscheidend", erklärt Prof. Christian Kiesling, Wissenschaftler am Max-Planck-Institut für Physik. "Zuständig für die Messungen ist der jetzt fertiggestellte, wegen seiner Eigenschaften weltweit konkurrenzlose Sensor."

Hergestellt aus 1000-fach reinerem Silizium als herkömmliche Transistoren oder Speicherchips, integriert das Modul auf einer Fläche von acht Quadratzentimetern 200.000 DEPFET-Pixelzellen. DEPFET steht für für Depleted p-channel Field Effect Transistor. Er wurde am Halbleiterlabor (HLL) der MPG erfunden und wird ausschließlich dort gefertigt.

Das DEPFET-Bauteil erlaubt den Nachweis von Photonen oder, so wie hier, von hochenergetischen Teilchen mit höchster Effizienz und Präzision. "Der grundlegende Prozess ist dem, der in herkömmlichen Foto- oder Videokameras abläuft, sehr ähnlich", erklärt Dr. Jelena Ninkovic, Leiterin des HLL. "Jedoch ist das primäre Signal beim Nachweis von einzelnen Photonen oder Teilchen sehr viel kleiner."

Selbstverstärkender Sensor

Hier kommt der große Vorteil des DEPFET zum Tragen: Das sehr kleine primäre Signal wird in dem Sensor selbst verstärkt. Der DEPFET ist somit das Sensormaterial und die erste Verstärkerstufe in Einem. Durch die Anordnung vieler DEPFETs zu einer Matrix entsteht ein Bildsensor, mit dem man den Entstehungsort eines Teilchens genau bestimmen kann. "In unserem Fall geschieht das mit einer Genauigkeit von etwa einem Hundertstel eines Millimeters", so Ninkovic weiter.

Die Ansteuerung der Pixel in einer Matrix und die schnelle Verarbeitung des DEPFET-Signals erfordert zusätzliche Elektronik, die in Kollaboration mit deutschen Universitäten entstanden ist. Diese Elektronik wird in Form von anwenderspezifischen Schaltkreisen (ASICs) direkt auf das Sensorsubstrat aufgebracht. Mit den ASICs lassen sich die Signale der Pixelmatrix digitalisieren und die Datenmenge verlustfrei reduzieren, um sie in höchster Geschwindigkeit (50.000 Bilder pro Sekunde) zu übertragen.

Komplexe Elektronik auf haarfeiner Siliziumfolie

Die DEPFET Matrix wird dadurch zu einem sehr komplexen Modul mit maximaler Integrationsdichte, das trotz aller Komplexität extrem dünn und leicht ist, um die Messung der Teilchenspuren nicht durch das Sensormaterial selbst zu verfälschen.

Das HLL hat dafür eine einzigartige Technologie entwickelt. Sie erlaubt es, extrem dünne und hoch integrierte Sensormodule herzustellen. Der sensitive Teil des Moduls, die DEPFET Matrix, wird dabei durch angepasste Ätzverfahren auf 75 Mikrometer verdünnt, was der Dicke eines menschlichen Haares entspricht.

Diese an sich biegsame „Folie“ aus Silizium wird durch einen monolithisch integrierten Rahmen unterstützt, auf dem die Auslese- und Steuerelektronik aufgebracht ist. Die Spannungsversorgung und die Datenleitungen laufen über ein flexibles Flachbandkabel, das am Ende des Moduls angebracht ist.

Die HLL-Technologie erlaubt es, die dünnen DEPFET Matrizen zylinderförmig ohne jede weitere Unterstützung um den Wechselwirkungspunkt des Experiments anzuordnen. Die hochpräzise Messung von Teilchenspuren wird damit zur Realität.

Mehr Information:
Das Halbleiterlabor der Max-Planck-Gesellschaft: http://www.hll.mpg.de/index.html
Das Belle II-Experiment am Max Planck-Institut für Physik: https://www.mpp.mpg.de/forschung/experimental/belle/index.html
Webseite des SuperKEKB-Experiments: http://www.kek.jp/en/

Kontakt:

Dr. Jelena Ninkovic
Leiterin des Halbleiterlabors der Max-Planck-Gesellschaft
Tel.: +49 89 839400-49
nin@hll.mpg.de

Prof. Dr. Christian Kiesling
Sprecher der DEPFET-Kollaboration
Max-Planck-Institut für Physik
Tel.: +49 89 32354-258
cmk@mpp.mpg.de

Weitere Informationen:

https://www.mpp.mpg.de/pr/medienarchiv/03_print/pressemeldungen/pressemeldungen2...

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie