Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radiometer spürt Brandherde auf

03.01.2011
Waldbrände breiten sich meist rasend schnell und unkontrolliert aus. Feuer mit starker Rauchentwicklung fordern die Einsatzkräfte besonders heraus, denn die Brandherde lassen sich nur schwer ausfindig machen. Ein neuer radiometrischer Sensor lokalisiert die Ausbruchsstellen selbst bei eingeschränkter Sicht.

Die Anzahl und das Ausmaß von Waldbränden hat in den vergangenen Jahrzehnten drastisch zugenommen. Unvergessen sind Fernsehbilder von Flammeninfernos, die im Sommer in Russland, Australien und Kalifornien kilometerweit Flächen verwüsteten. Auch in Deutschland sind viele Regionen aufgrund des Klimawandels betroffen – Brandenburg etwa gehört zu den stark gefährdeten Gebieten in Europa.


Testflug: An einem Luftschiff der FernUniversität Hagen montiert soll das Radiometer auch bei schlechter Sicht Brandherde erkennen. (© Wolfgang Krüll)

Oftmals lassen sich die Feuer nur aus der Luft eindämmen. Um Brandherde gezielt bekämpfen zu können, müssen Löschflugzeuge präzise eingewiesen werden. Ein er probtes Hilfsmittel hierfür sind Infrarot-Kameras (IR), da Feuer im Infrarotbereich am intensivsten strahlt. Die IR-Kameras messen die Wärmestrahlung und können so Brandherde lokalisieren. Zudem liefern sie hochaufgelöste Bilder. Allerdings können diese Bildaufnehmer Ausbruchsstellen nicht bei starker Rauchentwicklung finden, da Infrarotstrahlen durch Partikel von Staub und Rauch zu stark gedämpft werden.

Eine Lösung des Problems kennen die Forscher des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg. Sie haben ein Radiometer entwickelt, das Brände auch bei eingeschränkter Sicht überwachen kann: Der radiometrische Sensor arbeitet im Mikrowellenbereich zwischen 8 und 40 GHz. Bei diesen niedrigen Frequenzen fällt die Streuung der Strahlen an Staubpartikeln deutlich geringer aus als bei den hohen IR-Frequenzen. »Bei unseren Testmessungen bei 22 GHz war die Dämpfung zu vernachlässigen. Partikel aus Staub und Rauch sind im Mikrowellenbereich quasi transparent. Dennoch ist die Strahlungsleistung ausreichend hoch, um Brandnester zu erkennen. Aus einer Höhe von 100 Metern konnten wir bei eingeschränkten Sichtverhältnissen ein Feuer mit einer Fläche von fünf mal fünf Metern detektieren«, sagt Dipl.-Ing. Nora von Wahl, Wissenschaftlerin am FHR. Für die Testflüge montierten die Forscherin und ihr Team den Mikrowellensensor an der Unterseite eines unbemannten Luftschiffs der FernUniversität Hagen. »Bestandteil des Radiometers sind neben der Sensorik eine Kalibrierungseinheit, eine planare Gruppenantenne und Software, um Daten aufzuzeichnen und zu visualisieren«, sagt die Expertin. Die Auflösung des Systems wird durch den Öffnungswinkel der Antenne bestimmt und hängt somit von Antennengröße, Frequenz und Entfernung zum Boden ab. Bei einer Antennengröße von 20 Zentimeter Kantenlänge, einer Frequenz von 22 GHz und in einer Höhe von 30 Metern löste das Radiometer 2,6 Meter große quadratische Zellen auf. »Zwar erreichen wir mit dem Radiometer nicht die Detailgenauigkeit von Infrarot-Kameras. Wir vergrößern die Antenne und können dadurch die Auflösung erhöhen«, sagt die Forscherin. Mit dem radiometrischen Sensor sind die Wissenschaftler sogar in der Lage, Brandnester durch Blattwerk hindurch zu bestimmen. Und: »Nach einem Waldbrand entfachen sich oft neue Feuer unter der Erde. Um diese zu entdecken, haben Feuerwehrleute den Boden bisher mit Haken per Hand umgegraben. Unser Radiometer kann Ausbruchsstellen unter der obersten Erdschicht erkennen«, erklärt Nora von Wahl. Das System lasse sich hauptsächlich beim Brandschutz mit Löschflugzeugen einsetzen. Denkbar sei auch, mit dem Radiometer Industrieanlagen zu überwachen, etwa um Schwelbrände in Müllverbrennungsanlagen frühzeitig zu orten.

Das 105 mal 150 mal 73 Millimeter große Radiometer liegt als Prototyp vor. Ziel der Wissenschaftler ist es, das Gerät noch kleiner zu konstruieren. Auch die Antenne wollen die Ingenieure optimieren. Künftige Modelle sollen sich zudem durch ihre chipbasierte Bauweise auszeichnen.

Denis Nötel | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/13/radiometer-brand.jsp

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie