Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017

Supernovae sind eine wichtige Quelle chemischer Elemente im Kosmos. Bei diesen Sternexplosionen entstehen in ihrem heißen Innern radioaktive Atomkerne, die über die unsichtbaren Vorgänge Aufschluss liefern können, welche zur Explosion führen. Mithilfe aufwändiger Computerberechnungen gelang es nun einem Team von Forschern am Max-Planck-Institut für Astrophysik (MPA) und am RIKEN Forschungszentrum in Japan, die jüngst gemessene räumliche Verteilung von radioaktivem Titan und Nickel in Cassiopeia A zu erklären. Dieser Gasnebel ist der rund 340 Jahre alte Überrest einer relativ nahen Supernova. Die Computermodelle stützen die theoretische Vorstellung, dass solche Sternexplosionen von Neutrinos ausgelöst werden, die der im Zentrum neu entstehende Neutronenstern abstrahlt.

Massereiche Sterne beenden ihr Leben mit einer gigantischen Explosion, einer sogenannten Supernova. Während ihres Lebens bauen solche Sterne in Millionen Jahren stabiler Entwicklung einen zentralen Bereich aus Eisen auf. Sobald dieser auf die zirka eineinhalbfache Masse der Sonne angewachsen ist, kollabiert er unter dem Einfluss der eigenen Schwerkraft zu einem Neutronenstern und setzt dabei gewaltige Energiemengen durch Neutrinos frei.


Abb. 1:

Zeitentwicklung des ausgeschleuderten radioaktiven Elements Nickel (56Ni) in einer 3D-Computerberechnung für eine Neutrino-getriebene Supernova-Explosion. Die Bildfolge zeigt die nichtsphärische Verteilung von einem frühen Moment nach Einsetzen der Explosion (3,25 Sekunden) bis zu einer späten Phase (6236 Sekunden), wenn die endgültige Asymmetrie festliegt. Die Farben repräsentieren radiale Geschwindigkeiten, wobei die Farbskala für die einzelnen Bilder leicht unterschiedlich ist.

© MPA


Abb. 2a:

Beobachtete Verteilung von radioaktivem Titan (44Ti, blau) und Eisen (weiß, rot) in Kassiopeia A. Das sichtbare Eisen ist vorwiegend Zerfallsprodukt von radioaktivem Nickel (56Ni). Ein gelbes Kreuz kennzeichnet das geometrische Zentrum der Explosion, das weiße Kreuz und der Pfeil geben die momentane Position und Bewegungsrichtung des Neutronensterns an.

Bildrechte: Macmillan Publishers Ltd: Nature; aus Grefenstette et al., Nature 506, 339 (2014); Eisenverteilung mit freundlicher Genehmigung von U.~Hwang


Abb. 2b: Beobachtbare Verteilung von radioaktivem Nickel (56Ni, grün) und Titan (44Ti, blau) wie sie von der 3D-Simulation einer Neutrino-getriebenen Supernova-Explosion in Abb. 1 vorhergesagt wird. Der Blickwinkel ist so gewählt, dass eine möglichst große Ähnlichkeit mit der Beobachtung von Cas A (Abb. 2a) besteht. Der Neutronenstern ist durch ein weißes Kreuz markiert und durch seine Eigenbewegung (Pfeil) gegenüber dem geometrischen Mittelpunkt der Explosion (rotes Plus) verschoben. Seine Bewegung ist entgegengesetzt zum Großteil des ausgeschleuderten 44Ti. Eisen (als Zerfallsprodukt von 56Ni) kann nur in einer äußeren, heißen Schale von Cas A beobachtet werden. © MPA


Abb. 3a: 56Ni 21. Juni 2017 Interaktive 3D Visualisierung der räumlichen Verteilung von 56Ni in der Neutrino-getriebenen Supernova-Explosion von Abb. 1.


Abb. 3b: 44Ti 21. Juni 2017 Interaktive 3D Visualisierung der räumlichen Verteilung von 44Ti in der Neutrino-getriebenen Supernova-Explosion von Abb. 1.

Diese nahezu masselosen Elementarteilchen entstehen bei den extremen Bedingungen im Innern des neugeborenen Neutronensterns, wo die Dichten höher als in Atomkernen sind und die Temperaturen mehr als 500 Milliarden Grad Kelvin erreichen können.

Seit über 50 Jahren tüfteln Theoretiker daran, die physikalischen Prozesse zu verstehen, welche die Sternexplosion auslösen und antreiben. Eine populäre Idee benutzt dazu die Neutrinos, weil diese über hundertmal mehr Energie wegtragen als die Sternhülle, die bei der Explosion einer typischen Supernova ausgeschleudert wird.

Ein kleiner Bruchteil der Neutrinos, die dem Innern des Neutronensterns entkommen, wird dabei aber von der umgebenden Materie wieder absorbiert, wodurch das Gas aufgeheizt wird. Dadurch kommt es zu heftigen Bewegungen, ähnlich denen in einem Topf mit kochendem Wasser. Wird das Brodeln zu heftig, kommt es zur Supernova-Explosion - als ob der Deckel vom Topf weg gesprengt würde.

Infolgedessen werden die äußeren Sternschichten in den Raum geschleudert, und mit ihnen all die chemischen Elemente, die der Stern im Lauf seines Lebens erbrütet hat. Daneben entstehen in den heißen Ejekta aber auch neue Elemente, insbesondere radioaktive Atomkerne wie Titan (44Ti mit 22 Protonen und 22 Neutronen) und Nickel (56Ni mit je 28 Protonen und Neutronen), die anschließend zu stabilem Kalzium und Eisen zerfallen. Die dabei freigesetzte Zerfallsenergie lässt eine Supernova über Jahre hinweg hell erstrahlen.

Weil das von Neutrinos geheizte Gas heftig brodelt, beginnt die Explosion asphärisch und Computermodelle lassen erwarten, dass Supernovae die Sternmaterie stark richtungsabhängig ausschleudern (Abb. 1). Genau das wird auch beobachtet: Supernovae und ihre gasförmigen Überreste sind deformiert, die chemische Zusammensetzung und Dichte des expandierendes Gases weist eine räumliche Variation auf.

Die anfängliche Asymmetrie der Explosion hat insbesondere zwei wichtige Folgen. Zum einen erhält der Neutronenstern einen Rückstoß entgegengesetzt zur der Richtung, in der die Explosion am stärksten ist. Er verhält sich dabei analog zu einem Ruderboot, aus dem eine Person abspringt. Zum anderen entstehen auf der Seite der stärkeren Explosion, auf der mehr heißes Gas ausgeschleudert wird, auch mehr schwere Elemente von Silizium bis Eisen, insbesondere auch Titan und Nickel.

"Beide Effekte haben wir schon vor einigen Jahren durch unsere dreidimensionalen Simulationen Neutrino-getriebener Supernova-Explosionen vorhergesagt", betont RIKEN-Forscher Annop Wongwathanarat, der Erstautor einer entsprechenden Veröffentlichung aus dem Jahr 2013, als er noch am MPA mit seinen Koautoren H.-Thomas Janka und Ewald Müller zusammenarbeitete. "Die Asymmetrie der Verteilung radioaktiver Elemente ist umso ausgeprägter, je höher die Rückstoßgeschwindigkeit des Neutronensterns ist", fügt er hinzu. Weil die radioaktiven Atome in den innersten Regionen der Supernova in unmittelbarer Nähe des Neutronensterns entstehen, bildet ihre räumliche Verteilung die Asymmetrie der Explosion am stärksten ab.

Neue Beobachtungen von Kassiopeia A (Cas A), dem gasförmigen Überrest einer Supernova, deren Licht die Erde um das Jahr 1680 erreichte, haben mittlerweile die theoretischen Vorhersagen bestätigt. Aufgrund ihres jungen Alters und ihrer relativen Nähe (mit einer Entfernung von nur 11.000 Lichtjahren) bietet Cas A zwei große Vorteile für derartige Messungen. Erstens setzt der radioaktive Zerfall von 44Ti immer noch erhebliche Mengen Energie und damit hochenergetische (Röntgen-)Strahlung frei, so dass die räumliche Verteilung dieses radioaktiven Elements mit hoher Genauigkeit abgebildet werden kann.

Zweitens sind sowohl die scheinbare Richtung als auch die Größe der Rückstoßgeschwindigkeit des Neutronensterns in Kassiopeia A bekannt: Der Neutronenstern jagt mit einer geschätzten Geschwindigkeit von mindestens 350 Kilometern pro Sekunde durchs All. Daher erwartet man eine beträchtliche Asymmetrie in der räumlichen Verteilung der radioaktiven Elemente. Genau dies wird auch beobachtet (Abb. 2, links).

Während der kompakte Sternüberrest in die südliche Hemisphäre rast, befinden sich die größten und hellsten 44Ti-Strukturen zusammen mit der meisten Materie in nördlicher Richtung. Die Computersimulation zeigt, aus einem geeigneten Blickwinkel betrachtet, eine verblüffende Ähnlichkeit mit dem Beobachtungsbild (Abb. 2, rechts). Dies demonstriert auch ein Vergleich der 3D Visualisierung der Computersimulation in Abb. 3 mit einer 3D-Karte der Beobachtungsdaten (siehe hier http://3d.si.edu/explorer?modelid=45 ).

Aber nicht nur die räumliche Verteilung von Titan und Eisen ähnelt derjenigen in Cas A. Auch die im Rechnermodell erzeugten Mengen dieser chemischen Elemente, die zugehörigen Ausbreitungsgeschwindigkeiten und die berechnete Geschwindigkeit des Neutronensterns stimmen erstaunlich gut mit denen von Cas A überein. "Diese Fähigkeit, grundsätzliche Eigenschaften der Beobachtungen durch ausgefeilte theoretische Modelle zu reproduzieren, belegt auf beeindruckende Weise, dass Cas A tatsächlich der gasförmige Überrest einer Neutrino-getriebenen Supernova sein könnte, deren Explosion durch heftige Gasbewegungen um den Neutronenstern ausgelöst wurde", schlussfolgert H.-Thomas Janka vom MPA.

Ein überzeugender Nachweis, dass massereiche Sterne durch die Energie von Neutrinos explodieren, erfordert aber weitere Untersuchungen. "Kassiopeia A ist ein derart interessantes und wichtiges Objekt, dass wir hier auch die geometrische Verteilung aller anderen chemischen Elemente, wie z.B. Silizium, Argon, Neon und Sauerstoff, verstehen müssen", bemerkt Ewald Müller (MPA) und verweist auf die fantastische Detailfülle, die der Cas A-Überrest in der dreidimensionalen Darstellung (siehe http://3d.si.edu/explorer?modelid=45) aufweist. Außerdem reicht ein Beispiel allein nicht für einen Beweis aus, dass die theoretischen Vorhersagen die Beobachtungen erklären können. Die Forschergruppe hat sich daher einer größeren Kollaboration angeschlossen mit dem Ziel, die theoretischen Vorhersagen für Neutrino-getriebene Explosionen mit einer größeren Zahl von Supernova-Überresten zu vergleichen. So hoffen die Wissenschaftler, Schritt für Schritt genug Fakten zusammenzutragen, um das alte Rätsel zu lösen, welche Vorgänge die Supernova-Explosionen verursachen.

Abbildungen:

Abbn. 1a, b, c:

Zeitentwicklung des ausgeschleuderten radioaktiven Elements Nickel (56Ni) in einer 3D-Computerberechnung für eine Neutrino-getriebene Supernova-Explosion. Die Bildfolge zeigt die nichtsphärische Verteilung von einem frühen Moment nach Einsetzen der Explosion (3,25 Sekunden) bis zu einer späten Phase (6236 Sekunden), wenn die endgültige Asymmetrie festliegt. Die Farben repräsentieren radiale Geschwindigkeiten, wobei die Farbskala für die einzelnen Bilder leicht unterschiedlich ist.

Abb. 2a:

Beobachtete Verteilung von radioaktivem Titan (44Ti, blau) und Eisen (weiß, rot) in Kassiopeia A. Das sichtbare Eisen ist vorwiegend Zerfallsprodukt von radioaktivem Nickel (56Ni). Ein gelbes Kreuz kennzeichnet das geometrische Zentrum der Explosion, das weiße Kreuz und der Pfeil geben die momentane Position und Bewegungsrichtung des Neutronensterns an.

(Bildrechte: Macmillan Publishers Ltd: Nature; aus Grefenstette et al., Nature 506, 339 (2014); Eisenverteilung mit freundlicher Genehmigung von U.~Hwang.)

Abb. 2b:

Beobachtbare Verteilung von radioaktivem Nickel (56Ni, grün) und Titan (44Ti, blau) wie sie von der 3D-Simulation einer Neutrino-getriebenen Supernova-Explosion in Abb. 1 vorhergesagt wird. Der Blickwinkel ist so gewählt, dass eine möglichst große Ähnlichkeit mit der Beobachtung von Cas A (Abb. 2a) besteht. Der Neutronenstern ist durch ein weißes Kreuz markiert und durch seine Eigenbewegung (Pfeil) gegenüber dem geometrischen Mittelpunkt der Explosion (rotes Plus) verschoben. Seine Bewegung ist entgegengesetzt zum Großteil des ausgeschleuderten 44Ti. Eisen (als Zerfallsprodukt von 56Ni) kann nur in einer äußeren, heißen Schale von Cas A beobachtet werden.

Abbn. 3a, b:

Interaktive 3D Visualisierung der räumlichen Verteilung von (a) 56Ni und (b) 44Ti in der Neutrino-getriebenen Supernova-Explosion von Abb. 1. Die Modellergebnisse sollten mit der interaktiven 3D-Karte der Beobachtungsdaten (siehe hier http://3d.si.edu/explorer?modelid=45 ) von Eisen in Cas A verglichen werden.

Die Frontansicht des Supernova-Modells ist so gewählt, dass die Ähnlichkeit mit Cas A optimal ist. Für die Computersimulation ist die gesamte Verteilung von erzeugtem Eisen und Titan gezeigt, während bei Cas A Eisen nur in einer äußeren, heißen Schale nachweisbar ist, im kalten Zentralbereich aber unsichtbar bleibt. Die drei größten Strukturen von Eisen bei Cas A entsprechen den Kappen der drei dominanten "Finger" bei der berechneten Verteilung.

Veröffentlichung:

Wongwathanarat, A.; Janka, H.-Th.; Mueller, E.; Pllumbi, E.; Wanajo, S.

Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A

ApJ 842 13

http://adsabs.harvard.edu/abs/2016arXiv161005643W

Webseite:

http://www.mpa-garching.mpg.de/447727/news20170621

HTJ

Kontakt:
Dr. H.-Thomas Janka
MPI für Astrophysik
Tel: +49 (89) 30 000 2228
Email: thj@mpa-garching.mpg.de
 
Dr. Ewald Mueller
MPI für Astrophysik
Tel: +49 (89) 30 000 2209
Email: emueller@mpa-garching.mpg.de
 
Dr. Hannelore Hämmerle
Pressesprecherin
MPI für Astrophysik
Tel: +49 (89) 30 000 3980
Email: pr@mpa-garching.mpg.de
 

Dr. Hannelore Hämmerle | Max-Planck-Institut für Astrophysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie