Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Spinspiralen" für die Rechner der Zukunft

07.05.2012
Forscher aus Jülich, Hamburg und Kiel schlagen neuen Weg für Informationstransport im Nanomaßstab vor

Wie können Computerdaten zukünftig sicher gespeichert und ausgelesen werden, wenn Rechner immer kleiner werden? Forscher aus Jülich, Hamburg und Kiel schlagen vor, die magnetischen Momente in Ketten aus Eisenatomen zu nutzen.


Magnetische Ordnung von Ketten aus Eisenatomen (gelb/rot) auf einer Iridiumoberfläche (blau/grün), aufgenommen mit einem Rastertunnelmikroskop mit magnetischer Spitze. Zu sehen ist ein etwa 30 mal 30 Nanometer großer Probenausschnitt. Mit dieser Technik, kombiniert mit Computersimulationen, konnten Forscher aus Jülich, Hamburg und Kiel nachweisen, dass sich die magnetische Ordnung gezielt modulieren und zum Transport von Informationen nutzen lässt.
Quelle: Universität Hamburg/Universität Kiel/Forschungszentrum Jülich

Damit lassen sich Informationen im Nanobereich transportieren, und dies schnell, energiesparend, in einem breiten Temperaturbereich und robust gegenüber äußeren Magnetfeldern. Das zeigten die Forscher in Theorie und Experiment. Ihre Arbeit könnte einen Weg für die weitere Miniaturisierung in der Informationsverarbeitung öffnen.

Die internationale Fachzeitschrift „Physical Review Letters“ veröffentlicht die Ergebnisse in ihrer aktuellen Ausgabe mit besonderer Empfehlung der Redaktion und ergänzt durch einen Kommentar (DOI: 10.1103/PhysRevLett.108.197204 und DOI: 10.1103/Physics.5.53).

Computer speichern Daten bisher in magnetischen Domänen auf der Festplatte, den Bits. Bereits jetzt sind diese Bereiche nach menschlichen Maßstäben fast unvorstellbar klein: Eine 1-Terabyte-Festplatte etwa besitzt acht Billionen Bits. Um aber neue Funktionalitäten möglich zu machen, müssen Computerbauteile auch zukünftig weiter „schrumpfen“. Doch wenn die Bits zu eng beieinander liegen, überlappen ihre magnetischen Felder und das Einschreiben und Auslesen der Daten funktioniert nicht mehr. Deshalb werden neuartige Konzepte nötig. Einen Vorschlag für einen Datentransport im Nanomaßstab machen nun Wissenschaftler des Forschungszentrums Jülich und der Universitäten Hamburg und Kiel.

„Unseres Wissens ist dies ein vollkommen neues Konzept für einen Datentransport in dieser Größendimension“, sagt der Jülicher Physiker Prof. Stefan Blügel, Direktor am Institute of Advanced Simulation und am Peter Grünberg Institut. „Weil das System sehr stabil ist und Informationen damit schnell und energiesparend übertragen werden können, halten wir es für äußerst vielversprechend für zukünftige Anwendungen.“

„Spinspiralen“ nennen die Forscher die spiralförmige Anordnung der magnetischen Eigenschaften (Spins) in Ketten aus Eisenatomen, die sie für ihre Experimente in Doppelreihen auf einer Iridiumoberfläche platziert haben. Es ist das erste Mal, dass Forscher eine solche Ordnung in einer atomaren Kette Atom für Atom beobachtet haben. „Stellen Sie sich eine Spinspirale wie eine Schraube vor“, erläutert Prof. Yuriy Mokrousov vom Jülicher Institute of Advanced Simulation. „Wenn Sie den Kopf der Schraube packen und drehen, pflanzt sich diese Drehung bis zur Spitze fort. Das heißt, Sie können die Stellung des Schraubenkopfs erkennen, wenn Sie die Position der Spitze kennen.“

Stark vereinfacht stellt dieser Vergleich dar, wie die Spinspiralen zukünftig Daten transportieren sollen: Verbindet man sie an einem Ende mit einem magnetisierten Objekt, lässt sich am anderen Ende, wenige Atome und bis zu drei Hunderttausendstel Millimeter entfernt (30 Nanometer) dessen magnetische Ausrichtung ablesen. So könnte man zukünftig Daten dichter komprimieren und über die Spinspiralen auslesen. „Besonders interessant“, sagt Prof. Blügel, „ist dabei die Tatsache, dass der Drehsinn der atomaren Schraube, den wir in der Fachsprache Chiralität nennen, sehr stabil ist auch bei relativ warmen Temperaturen.“ Die Forscher haben das System bei bis zu 100 Kelvin untersucht.

Physikalisch betrachtet besitzen die Spinspiralen eine komplexe magnetische Ordnung – Fachleute sprechen von „nicht-kollinear“, weil die Spins benachbarter Atome nicht parallel aufgereiht sind, wie es in einfachen magnetischen Materialien der Fall ist. Die komplexe Ordnung bringt Vorteile für mögliche Anwendungen mit sich: Zum Beispiel zeigt sie von außen betrachtet nur eine kleine Restmagnetisierung; deshalb sind die Gebilde unempfindlich gegenüber externen Magnetfeldern. Gleichzeitig lassen sie sich aber durch magnetische Objekte an den Enden leicht beeinflussen, wichtig für einen effizienten Informationstransport.

Die Proben wurden in Hamburg hergestellt und untersucht. Die Forscher nutzten ein Rastertunnelmikroskop mit magnetischer Spitze, um die magnetische Struktur der Probenoberfläche zu messen. In Jülich wurden sehr aufwendige Computersimulationen durchgeführt, um die Messdaten zu analysieren und um zu verstehen, warum sich die Spinspiralen bilden. Die Forscher planen nun zu untersuchen, ob das System auch bei höheren Temperaturen bis hin zu Raumtemperatur stabil ist.

Magnetische Ordnung von Ketten aus Eisenatomen (gelb/rot) auf einer Iridiumoberfläche (blau/grün), aufgenommen mit einem Rastertunnelmikroskop mit magnetischer Spitze. Zu sehen ist ein etwa 30 mal 30 Nanometer großer Probenausschnitt. Mit dieser Technik, kombiniert mit Computersimulationen, konnten Forscher aus Jülich, Hamburg und Kiel nachweisen, dass sich die magnetische Ordnung gezielt modulieren und zum Transport von Informationen nutzen lässt.
Quelle: Universität Hamburg/Universität Kiel/Forschungszentrum Jülich

Originalveröffentlichung:
Information Transfer by Vector Spin Chirality in Finite Magnetic Chains; M. Menzel et al.; Phys. Rev. Lett. 108, 197204 (2012); DOI:10.1103/PhysRevLett.108.197204
Viewpoint: Pushing Bits Through a Spin Wire; Shigeki Onoda; Physics 5, 53 (2012); DOI: 10.1103/Physics.5.53

Weitere Informationen:
Zur Pressemitteilung vom 10.05.2007 „Supercomputer zeigt: Nanoschichten haben Sinn für Drehungen“: http://www2.fz-juelich.de/portal/index.php?index=163&jahr=2007&cmd=show&mid=479

Forschung am Institut Quanten-Theorie der Materialien (PGI-1/IAS-1): http://www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html

Forschung am Institut für Angewandte Physik der Universität Hamburg: http://www.nanoscience.de/group_r/stm-spstm/

Forschung am Institut für Theoretische Physik und Astrophysik der Universität Kiel: http://www.itap.uni-kiel.de/theo-physik/heinze/

Ansprechpartner:
Prof. Dr. Yuriy Mokrousov,Institut Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel. 02461 61-4434
y.mokrousov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin
Tel. 02461 61-6048
a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften