Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Quantenmechaniker" lösen ein klassisches Problem: Wie lange schwingt eine Stimmgabel?

09.03.2011
Sowohl für die Akustik von Musikinstrumenten als auch für die Konstruktion mikromechanischer Bauteile ist die mechanische Dämpfung der Schwingungen eine essenzielle Größe.

Doch bisher war es nicht möglich, Dämpfungen vorauszuberechnen, die durch die Aufhängung der Mechanik verursacht werden. Einem Forschungsteam von PhysikerInnen der Universität Wien und der Technischen Universität München ist es nun gelungen, eine Berechnungsmethode zu entwickeln, mit der dies möglich ist. Ihre Ergebnisse präsentiert das Online-Journal Nature Communications in seiner aktuellen Ausgabe.


Mikrobild einer der Resonatoren
(Credit: Universität Wien, Garrett Cole)

Musikinstrumente sind die bekanntesten Beispiele für Resonatoren. Die mechanischen Schwingungen der Klangstäbe eines Xylophons oder einer Gitarrensaite verursachen akustische Schwingungen, die wir als Ton hören. Die Reinheit des Klangs ist eng verknüpft mit dem Rückgang der Schwingungsamplitude durch die mechanische Dämpfung. Zur Beschreibung der mechanischen Verluste nutzen die Wissenschaftler den Qualitätsfaktor "Q", der die Anzahl der Schwingungen beschreibt, bis die Amplitude der Schwingung auf einen Bruchteil des Ausgangswertes abgeklungen ist. Je größer der "Q-Faktor", desto reiner klingt der Ton und umso länger schwingt das System, bis der Ton durch die mechanischen Verluste verstummt.

Auch in der Mikroelektronik gewinnen mechanische Resonatoren zunehmend an Bedeutung. Sie werden eingesetzt als Filterelemente in drahtlosen Kommunikationssystemen oder als Timing-Oszillatoren für kommerzielle Elektronik. Die aktuelle Grundlagenforschung nutzt mikromechanische Resonatoren zur Entwicklung hochempfindlicher biologischer Sensoren, quantenelektronischer und optomechanischer Bauteile. Hierbei sind extrem reine Schwingungen erwünscht, um bestimmte Signale herauszufiltern oder kleinste Frequenzverschiebungen zu messen.

Für viele dieser Anwendungen ist es notwendig, die mechanischen Verluste zu minimieren. Allerdings war es selbst bei einfachen Geometrien bisher nahezu unmöglich, den erreichbaren Gütefaktor Q vorauszuberechnen. Diese Hürde haben die Forschungsteams aus Wien und München (Garching) überwunden. Mit ihrem neuen Berechnungsverfahren auf Basis der Finite-Elemente-Methode können sie nun die designbedingte Dämpfung nahezu beliebiger Resonatorgeometrien vorausberechnen. "So wie man eine Lichtwelle auch als Teilchen beschreiben kann, das sogenannte Photon, können sich auch mechanische Schwingungen wie Teilchen verhalten, die Phononen. Wir berechnen nun, wie die von der Schwingung des Resonators ausgehenden Phononen in den Träger des Resonators abstrahlen", erklärt Garrett Cole, Senior Researcher in der Arbeitsgruppe von Markus Aspelmeyer am Vienna Center for Quantum Science and Technology (VCQ) der Universität Wien. "Damit schaffen wir die Möglichkeit, diese Probleme berechnen zu können. Das ist ein Durchbruch für die gezielte Konstruktion solcher Bauteile."

Maßstabsunabhängiges Verfahren
Die Idee geht zurück auf eine frühere Arbeit von Ignacio Wilson-Rae, Physiker an der Technischen Universität München und Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM). In enger Zusammenarbeit haben die Teams in Garching und Wien nun eine einfache numerische Lösung entwickelt, die die Berechnung der mechanischen Verluste auf einem Standard-PC ermöglicht. Die Vorhersagekraft des numerischen "Q-Solver" setzt dem gegenwärtigen Rätselraten und Herumprobieren bei der Gestaltung von mechanischen Resonatoren ein Ende. Besonders stolz sind die Physiker darauf, dass ihr Verfahren maßstabsunabhängig ist und so auf eine breite Palette von Szenarien angewandt werden kann, von nanoskaligen Bauteilen bis hin zu makroskopischen Systemen.

Die Arbeiten wurden unterstützt aus Mitteln der Europäischen Kommission (Marie Curie Stipendium für G. D. Cole, Projekte MINOS, IQOS, QUESSENCE), dem European Research Council (ERC StG QOM), dem Österreichischen Wissenschaftsfonds (Projekte START, L426; SFB Foundations and Applications of Quantum Science, FoQuS; Doktorandenprogramm Complex Quantum Systems, CoQuS), die Österreichische Forschungsförderungsgesellschaft (FFG), und die Deutsche Forschungsgemeinschaft (Cluster of Excellence Nanosystems Initiative Munich, NIM). Die Herstellung der Resonatoren erfolgte im Zentrum für Mikro- und Nanostrukturen (ZMNS) der Technischen Universität Wien.

Publikation
Phonon-tunnelling dissipation in mechanical resonators,
Garrett D. Cole, Ignacio Wilson-Rae, Katharina Werbach, Michael R. Vanner, Markus Aspelmeyer, Nature Communications, 8 March, 2011, DOI: 10.1038/ncomms1212

http://www.nature.com/ncomms/journal/v2/n3/full/ncomms1212.html

Wissenschaftliche Kontakte

Dr. Garrett Cole
Universität Wien, Fakultät für Physik
Vienna Center for Quantum Science and Technology (VCQ)
1090 Wien, Boltzmanngasse 5
T +43-1-4277-72535
garrett.cole@univie.ac.at
http://aspelmeyer.quantum.at/
http://vcq.quantum.at/
Dr. Ignacio Wilson-Rae
Technische Universität München
Physik-Department, T 34
85748 Garching, James-Franck-Str. 1
T +49 89 289 12381
ignacio.wilson-rae@ph.tum.de
http://users.physik.tu-muenchen.de/ignacio/

Alexander Dworzak | idw
Weitere Informationen:
http://medienportal.univie.ac.at/presse

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive