Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"On-the-fly" Spektroskopie mit Diodenlaser und Frequenzkamm

01.09.2009
MPQ Wissenschaftler erzielen hochpräzise optische Breitbandspektroskopie durch Anwendung der Frequenzkammtechnik auf durchstimmbare Diodenlaser.

Seit Generationen erfährt das Gebiet der optischen Spektroskopie hohe Aufmerksamkeit von Wissenschaftlern, angefangen mit Joseph von Fraunhofers Entdeckung der dunklen Linien im Sonnenspektrum 1814, die Gustav Kirchhoff und Robert Bunsen 1859 mit der Lichtabsorption in Atomen und Molekülen erklärten.


Lichteinschluss in Mikrokavitäten: Gläserne Mikroresonatoren auf Siliziumchips erlauben es, Licht über eine längere Zeit zu speichern, die etwa einer Million Photonenumläufen im Resonator entspricht. Abhängig von der Wellenlänge bzw. Farbe wird das Licht mehr im Innern des Resonators eingeschlossen oder erstreckt sich bis in die Nähe seines Randes.

Im vergangenen Jahrzehnt erlebte die Spektroskopie geradezu eine Revolution durch die Erfindung der Frequenzkammtechnik, welche die erreichbare Präzision um ein Vielfaches steigerte. Nun haben Wissenschaftler um Dr. Tobias Kippenberg, Leiter der Gruppe "Laboratory of Photonics & Quantum Measurements" am MPQ und Tenure Track Assistenz-Professor an der Eidgenössischen Technischen Hochschule Lausanne (EPFL), eine neuartige Messtechnik für breitbandige und schnelle Bestimmungen optischer Spektren entwickelt.

Dabei übertragen sie die Genauigkeit der Frequenzkammtechnik auf leicht zu handhabende durchstimmbare Diodenlaser (Nature Photonics, AOP, August 2009, DOI:10.1038/nphoton.2009.138).

Bei durchstimmbaren Diodenlasern kann die Frequenz, d.h. Farbe des Laserlichts, stufenlos geändert werden um so ein charakteristisches Antwortspektrum des zu untersuchenden Objekts zu erhalten. Das betrifft sowohl die Untersuchung der Anregungsspektren von Gasatomen als auch die Absorptionseigenschaften von photonischen Bauelementen in der Nanophotonik. Die Durchstimmung des Diodenlasers allein erlaubt jedoch noch keine genaue spektroskopische Messung, solange man nicht zusätzlich die Frequenz des Diodenlasers zu jedem Zeitpunkt genau kennt. Hier kommt nun das neue Messsystem ins Spiel, das - unter Verwendung eines faserbasierten Frequenzkamms - eine instantane Kalibrierung des Diodenlasers erlaubt. Die Wissenschaftler erzielen dabei eine Genauigkeit von etwa 1 MHz, was, da die Frequenz des Laserlichts bei 200 THz liegt, einer relativen Genauigkeit von 5x10hoch-9 entspricht.

Als erste Anwendung der neuen Spektroskopiemethode untersuchten die Wissenschaftler Pascal Del'Haye und Dr. Arcizet die Absorptionsspektren von Chip-basierten monolithischen optischen Mikrotoroiden aus Quarzglas. Erstmals konnten damit deren Dispersionseigenschaften analysiert werden, da sich die extrem schmalen Absorptionslinien im Sub-Megahertz-Bereich nicht mit konventioneller Spektroskopie auflösen ließen. Numerische Rechnungen und experimentelle Ergebnisse zeigen, dass die Modenstruktur der Mikrotoroide extrem gleichförmig ist, d. h., die verschiedenen optischen Anregungsmoden des Toroids liegen in fast exakt den gleichen Abständen zueinander. Dieses überraschende Ergebnis folgt aus der räumlichen Verteilung der optischen Moden innerhalb des Resonators, die dazu führt, dass die "roten" Moden bei niedrigen Frequenzen stärker auf das Innere des Resonators beschränkt sind als die "blauen" Moden bei höheren Frequenzen. Dieser Unterschied wird jedoch zum Teil durch die frequenzabhängige Dispersion im Material kompensiert, wegen der rote Moden sich langsamer ausbreiten als blaue. "Aufgrund der deshalb insgesamt geringen Modendispersion eignen sich Mikrotoroide sehr gut für viele Anwendungen in der Mikrophotonik, aber auch für die Erzeugung von Frequenzkämmen, bei der nichtlineare optische Effekte zu tragen kommen," bekräftig Prof. Tobias Kippenberg. Gemeinsam mit Max Planck Innovation hat seine Gruppe die neue Technik zum Patent angemeldet.[PD]/Olivia Meyer-Streng

Originalveröffentlichung:
P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth & T. J. Kippenberg
Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion

Nature Photonics, Advance Online Publication, August 2009, DOI:10.1038/nphoton.2009.138

Nature Photonics "News and Views", T. Schibli
Optical spectroscopy: Clever calibration, doi:10.1038/nphoton.2009.150
Kontakt:
Prof. Dr. Tobias Kippenberg
Max-Planck- Institut für Quantenoptik, 85748 Garching, und
Ecole Polytechnique Fédérale de Lausanne, CH1015, Switzerland
Telefon: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Pascal Del'Haye
Max-Planck- Institut für Quantenoptik
Telefon: +49 - 89 / 32905 284
Fax: +49 - 89 / 32905 200
E-Mail: pascal.delhaye@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie