Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der "Molekulare Oktopus" als kleiner Bruder von "Schrödingers Katze"

06.04.2011
Rekord bei Quantenphysik maßgeschneiderter organischer Makromoleküle
Ein neuer Rekord im Nachweis quantenphysikalischer Eigenschaften von Nanopartikeln gelang QuantennanophysikerInnen der Universität Wien in Kooperation mit ChemikerInnen aus der Schweiz und den USA: Erstmals wurde das Quantenverhalten von Molekülen aus mehr als 400 Atomen nachgewiesen. Dabei stellen die WissenschafterInnen mit dem "Molekularen Oktopus" – angelehnt an die Gestalt der verwendeten Moleküle – einen wichtigen Aspekt des Gedankenexperiments "Schrödingers Katze" nach. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift Nature Communications präsentiert.

Künstlerische Darstellung der komplexesten und massivsten Moleküle (PFNS-10, TPP-152) mit denen Quanteninterferenz nachgewiesen werden konnte
(Illustration: Mathias Tomandl)

"Schrödingers Katze": zugleich tot und lebendig?

Die Quantenmechanik stellt seit Beginn des 20. Jahrhunderts eine der tragenden Säulen der modernen Physik dar. Einige ihrer Voraussagen stehen aber in eklatantem Widerspruch zu unserer Intuition und den Beobachtungen in unserer Alltagswelt. Dieser Widerspruch wurde vom österreichischen Physiker Erwin Schrödinger vor 80 Jahren auf den Punkt gebracht: Er fragte sich, ob es möglich sei, auch extreme Überlagerungszustände zu realisieren – zum Beispiel den einer Katze, die zugleich tot und lebendig sei. Aus gutem Grund wurde dieses Experiment nie tatsächlich erprobt. Ein Forschungsteam um Markus Arndt, Professor für Quantennanophysik an der Universität Wien, zeigt nun, dass es möglich ist, mit großen organischen Molekülen wichtige Aspekte von Schrödingers Gedankenexperiment nachzustellen.

Superposition bei immer größeren Objekten

In der Quantenphysik wird die Ausbreitung einzelner massiver Teilchen durch Materiewellen beschrieben. Somit verlieren die Teilchen in der Praxis in gewissem Sinn ihre klassische Eigenschaft, einen Ort zu haben; ihre quantenphysikalische Wellenfunktion kann gleichzeitig an mehreren Orten sein. "Dieser Zustand ähnelt formal demjenigen einer Katze, die zugleich lebt und tot ist. Die Quantenphysik bezeichnet dies als 'Superposition'", sagt Markus Arndt.

Sein Forschungsteam an der Universität Wien beschäftigt sich mit der Frage, bis zu welcher Komplexität man diese erstaunlichen Gesetze der Quantenphysik nachweisen kann. Dazu untersuchen die PhysikerInnen in einem Interferometer das Quantenverhalten immer größerer Moleküle, insbesondere deren Überlagerung an vielen Orten. "Die hohe Instabilität der meisten organischen Komplexe stellt dabei eine große Herausforderung dar", so Stefan Gerlich, Erstautor der Publikation.

Designermoleküle lösen das Problem der Instabilität

Viele Moleküle zerbrechen schon während der Präparation des thermischen Molekularstrahls. Für den Erfolg der neuen Versuche war daher eine enge Kooperation mit Chemikern aus der Schweiz und den USA ausschlaggebend. Sowohl dem Team um Marcel Mayor an der Universität Basel als auch Paul J. Fagan vom US-amerikanischen Konzern DuPont ist es gelungen, schwere Molekülverbindungen zu synthetisieren, die den kritischen Verdampfungsprozess überstehen.

Mit Insulin vergleichbar

"Anhand von speziell synthetisierten organischen Molekülen mit Komplexen aus bis zu 430 Atomen wurde die quantenmechanische Wellennatur in einem bislang experimentell unzugänglichen Massen- und Größenbereich nachgewiesen", erklärt Arndt. Dieser "Molekulare Oktopus" ist in Größe, Masse und Komplexität mit Insulin vergleichbar und verhält sich in vieler Hinsicht schon wie "klassische" Teilchen. Dennoch können die maßgeschneiderten Teilchen im jetzigen Experiment in einer Überlagerung von klar unterscheidbaren Orten existieren. Sie befinden sich daher – ähnlich wie Schrödingers Katze – in einem von der klassischen Physik ausgeschlossenen Zustand.

Publikation
Quantum interference of large organic molecules: Stefan Gerlich, Sandra Eibenberger, Mathias Tomandl, Stefan Nimmrichter, Klaus Hornberger, Paul J. Fagan, Jens Tüxen, Marcel Mayor und Markus Arndt.
In: Nature Communications, 5. April 2011, DOI: 10.1038/ncomms1263
Volltext: http://www.nature.com/ncomms/journal/v2/n4/full/ncomms1263.html
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Markus Arndt
Gruppensprecher Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 05
markus.arndt@univie.ac.at
http://www.quantumnano.at
Rückfragehinweis
Mag. Petra Beckmannova
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 05
quantum-office@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://medienportal.univie.ac.at/presse/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie

Neurone am Rande der Katastrophe: Wie das Gehirn durch kritische Zustände effizient arbeitet

23.03.2017 | Seminare Workshops

Müll in den Weltmeeren überall präsent: 1220 Arten betroffen

23.03.2017 | Ökologie Umwelt- Naturschutz