Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quasikristall-Forschung an der Uni Stuttgart

08.12.2011
Hintergrundinformation zum Nobelpreis Chemie 2011

Die meisten Metalle setzen sich aus kleinen Kristallen zusammen. In deren Aufbau erkennt man Muster aus Atomgruppen, die sich wie bei einer Tapete periodisch wiederholen, und zwar nicht nur in einer Ebene, sondern in allen drei Richtungen des Raumes.


Dekagonaler Quasikristall, wie er sich von selbst im Rechner bildet, wenn man ein einfaches Kraftgesetz zwischen den Partikeln ansetzt.
(Abbildung: Universität Stuttgart/Gruppe Trebin).

Eine geometrische Regel besagt dabei, dass es keine periodischen Anordnungen gibt, die nur aus regelmäßigen Fünfecken bestehen. Prof. Dan Shechtman von der Tel Aviv University entdeckte 1982 in einem Aluminium-Mangan-Kristall regelmäßige Ikosaeder und Dodekaeder (das sind Körper, die von Vielecken als Seitenflächen begrenzt sind), die dieser Lehrmeinung widersprachen und erhält dafür am 10. Dezember 2011 in Stockholm den Nobelpreis in Chemie.

Im Raum Tübingen und Stuttgart hatten sich Wissenschaftler schon früh mit solchen Quasikristallen befasst, an der Universität Stuttgart sind derzeit drei Forschergruppen aktiv. Quasikristalle wird man künftig als reibungsarme, haftfreie Beschichtungen, als Thermobarrieren und – im Verbund mit normalen Metallen – als feste Leichtbauwerkstoffe einsetzen können.

Noch vor Shechtmans Entdeckung hatte Prof. Peter Kramer in Tübingen eine Belegung des dreidimensionalen Raumes mit zwei Arten von rhomboedrischen Zellen konstruiert, die Ikosaeder enthielt (ein Ikosaeder ist von 20 gleichseiteigen Dreiecken begrenzt), dafür aber aperiodisch war. Sie diente als erstes Strukturmodell für Shechtmans Beobachtung. Kramers Raumparkettierung verallgemeinerte eine lückenlose Belegung der Ebene mit zwei Kacheln, die ein Jahrzehnt zuvor in Oxford der Kosmologe Roger Penrose als gleichmäßiges Muster mit fünfzähliger Symmetrie vorgeschlagen hatte.

In Tübingen und Stuttgart wurden ab 1985 neue aperiodische Parkettierungen entdeckt, wie das so genannte Tübinger Dreiecksmuster, das Mikulla-Roth- und Gähler-Baake-Tiling.

An der Universität Stuttgart wurden Muster-Quasikristalle simuliert, indem man im Computer die Bahnen der Atome unter gegenseitigen Wechselwirkungen berechnete und prüfte, ob die Struktur erhalten blieb oder sich veränderte. Man untersuchte so auch plastische Verformung, Bruch und Strahlenschädigung von Quasikristallen. Diese theoretisch-numerischen Untersuchungen wurden begleitet durch Experimente am Max-Planck-Institut für Metallforschung in Stuttgart, wo man reale Quasikristalle synthetisierte und experimentell ihre mechanische Belastung und andere physikalische Eigenschaften studierte.

Aktuelle Forschungsschwerpunkte in Stuttgart
Während sich heute viele Forschungsgruppen, vor allem in Japan, den technischen Anwendungen der Quasikristalle widmen, gehen die Wissenschaftler an der Uni Stuttgart einen anderen Weg. Sie wollen die Auswirkungen der quasikristallinen Struktur in anderen als atomaren Systemen untersuchen. Die Gruppe von Prof. Hans-Rainer Trebin am Institut für Theoretische und Angewandte Physik hat ein einfaches Kraftgesetz gefunden, das, wenn man Partikel damit wechselwirken lässt, zweidimensionale Quasikristalle entstehen lässt. So kann man mit diesem Kraftgesetz im Computer die Bewegungen von quasikristallin angeordneten Teilchen berechnen, visualisieren und analysieren. Auch die Gruppe von Prof. Clemens Bechinger vom 2. Physikalischen Institut simuliert Quasikristalle, allerdings im Experiment mit kolloidalen Systemen. Diese bestehen aus Tausenden von Styroporkügelchen von Mikrometer-Maßen, die in einer Flüssigkeit schwimmen und einem Lichtfeld von fünf Lasern ausgesetzt sind. Die Teilchen ordnen sich zu quasikristallinen Strukturen an, die man im Lichtmikroskop beobachtet. Beide Gruppen können somit Erscheinungen der Quasikristalle studieren, zum Beispiel Reibungsphänomene, wie es an den Atomen realer Quasikristalle nicht möglich ist. Die Gruppe von Prof. Harald Gießen vom 4. Physikalischen Institut belegt Metallsubstrate mit quasikristallin angeordneten Goldstrukturen und untersucht, wie diese die Lichtausbreitung beeinflussen.
Ansprechpartner:
Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte Physik, Tel. 0711/685-65255, e-mail: trebin@itap.uni-stuttgart.de

Prof. Clemens Bechinger, 2. Physikalisches Institut, Tel. 0711/685 65218, e-mail: c.bechinger@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher verwandeln Diamant in Graphit

24.11.2017 | Physik Astronomie

Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen

24.11.2017 | Biowissenschaften Chemie

Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

24.11.2017 | Physik Astronomie