Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quasikristall-Forschung an der Uni Stuttgart

08.12.2011
Hintergrundinformation zum Nobelpreis Chemie 2011

Die meisten Metalle setzen sich aus kleinen Kristallen zusammen. In deren Aufbau erkennt man Muster aus Atomgruppen, die sich wie bei einer Tapete periodisch wiederholen, und zwar nicht nur in einer Ebene, sondern in allen drei Richtungen des Raumes.


Dekagonaler Quasikristall, wie er sich von selbst im Rechner bildet, wenn man ein einfaches Kraftgesetz zwischen den Partikeln ansetzt.
(Abbildung: Universität Stuttgart/Gruppe Trebin).

Eine geometrische Regel besagt dabei, dass es keine periodischen Anordnungen gibt, die nur aus regelmäßigen Fünfecken bestehen. Prof. Dan Shechtman von der Tel Aviv University entdeckte 1982 in einem Aluminium-Mangan-Kristall regelmäßige Ikosaeder und Dodekaeder (das sind Körper, die von Vielecken als Seitenflächen begrenzt sind), die dieser Lehrmeinung widersprachen und erhält dafür am 10. Dezember 2011 in Stockholm den Nobelpreis in Chemie.

Im Raum Tübingen und Stuttgart hatten sich Wissenschaftler schon früh mit solchen Quasikristallen befasst, an der Universität Stuttgart sind derzeit drei Forschergruppen aktiv. Quasikristalle wird man künftig als reibungsarme, haftfreie Beschichtungen, als Thermobarrieren und – im Verbund mit normalen Metallen – als feste Leichtbauwerkstoffe einsetzen können.

Noch vor Shechtmans Entdeckung hatte Prof. Peter Kramer in Tübingen eine Belegung des dreidimensionalen Raumes mit zwei Arten von rhomboedrischen Zellen konstruiert, die Ikosaeder enthielt (ein Ikosaeder ist von 20 gleichseiteigen Dreiecken begrenzt), dafür aber aperiodisch war. Sie diente als erstes Strukturmodell für Shechtmans Beobachtung. Kramers Raumparkettierung verallgemeinerte eine lückenlose Belegung der Ebene mit zwei Kacheln, die ein Jahrzehnt zuvor in Oxford der Kosmologe Roger Penrose als gleichmäßiges Muster mit fünfzähliger Symmetrie vorgeschlagen hatte.

In Tübingen und Stuttgart wurden ab 1985 neue aperiodische Parkettierungen entdeckt, wie das so genannte Tübinger Dreiecksmuster, das Mikulla-Roth- und Gähler-Baake-Tiling.

An der Universität Stuttgart wurden Muster-Quasikristalle simuliert, indem man im Computer die Bahnen der Atome unter gegenseitigen Wechselwirkungen berechnete und prüfte, ob die Struktur erhalten blieb oder sich veränderte. Man untersuchte so auch plastische Verformung, Bruch und Strahlenschädigung von Quasikristallen. Diese theoretisch-numerischen Untersuchungen wurden begleitet durch Experimente am Max-Planck-Institut für Metallforschung in Stuttgart, wo man reale Quasikristalle synthetisierte und experimentell ihre mechanische Belastung und andere physikalische Eigenschaften studierte.

Aktuelle Forschungsschwerpunkte in Stuttgart
Während sich heute viele Forschungsgruppen, vor allem in Japan, den technischen Anwendungen der Quasikristalle widmen, gehen die Wissenschaftler an der Uni Stuttgart einen anderen Weg. Sie wollen die Auswirkungen der quasikristallinen Struktur in anderen als atomaren Systemen untersuchen. Die Gruppe von Prof. Hans-Rainer Trebin am Institut für Theoretische und Angewandte Physik hat ein einfaches Kraftgesetz gefunden, das, wenn man Partikel damit wechselwirken lässt, zweidimensionale Quasikristalle entstehen lässt. So kann man mit diesem Kraftgesetz im Computer die Bewegungen von quasikristallin angeordneten Teilchen berechnen, visualisieren und analysieren. Auch die Gruppe von Prof. Clemens Bechinger vom 2. Physikalischen Institut simuliert Quasikristalle, allerdings im Experiment mit kolloidalen Systemen. Diese bestehen aus Tausenden von Styroporkügelchen von Mikrometer-Maßen, die in einer Flüssigkeit schwimmen und einem Lichtfeld von fünf Lasern ausgesetzt sind. Die Teilchen ordnen sich zu quasikristallinen Strukturen an, die man im Lichtmikroskop beobachtet. Beide Gruppen können somit Erscheinungen der Quasikristalle studieren, zum Beispiel Reibungsphänomene, wie es an den Atomen realer Quasikristalle nicht möglich ist. Die Gruppe von Prof. Harald Gießen vom 4. Physikalischen Institut belegt Metallsubstrate mit quasikristallin angeordneten Goldstrukturen und untersucht, wie diese die Lichtausbreitung beeinflussen.
Ansprechpartner:
Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte Physik, Tel. 0711/685-65255, e-mail: trebin@itap.uni-stuttgart.de

Prof. Clemens Bechinger, 2. Physikalisches Institut, Tel. 0711/685 65218, e-mail: c.bechinger@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie