Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quasikristall-Forschung an der Uni Stuttgart

08.12.2011
Hintergrundinformation zum Nobelpreis Chemie 2011

Die meisten Metalle setzen sich aus kleinen Kristallen zusammen. In deren Aufbau erkennt man Muster aus Atomgruppen, die sich wie bei einer Tapete periodisch wiederholen, und zwar nicht nur in einer Ebene, sondern in allen drei Richtungen des Raumes.


Dekagonaler Quasikristall, wie er sich von selbst im Rechner bildet, wenn man ein einfaches Kraftgesetz zwischen den Partikeln ansetzt.
(Abbildung: Universität Stuttgart/Gruppe Trebin).

Eine geometrische Regel besagt dabei, dass es keine periodischen Anordnungen gibt, die nur aus regelmäßigen Fünfecken bestehen. Prof. Dan Shechtman von der Tel Aviv University entdeckte 1982 in einem Aluminium-Mangan-Kristall regelmäßige Ikosaeder und Dodekaeder (das sind Körper, die von Vielecken als Seitenflächen begrenzt sind), die dieser Lehrmeinung widersprachen und erhält dafür am 10. Dezember 2011 in Stockholm den Nobelpreis in Chemie.

Im Raum Tübingen und Stuttgart hatten sich Wissenschaftler schon früh mit solchen Quasikristallen befasst, an der Universität Stuttgart sind derzeit drei Forschergruppen aktiv. Quasikristalle wird man künftig als reibungsarme, haftfreie Beschichtungen, als Thermobarrieren und – im Verbund mit normalen Metallen – als feste Leichtbauwerkstoffe einsetzen können.

Noch vor Shechtmans Entdeckung hatte Prof. Peter Kramer in Tübingen eine Belegung des dreidimensionalen Raumes mit zwei Arten von rhomboedrischen Zellen konstruiert, die Ikosaeder enthielt (ein Ikosaeder ist von 20 gleichseiteigen Dreiecken begrenzt), dafür aber aperiodisch war. Sie diente als erstes Strukturmodell für Shechtmans Beobachtung. Kramers Raumparkettierung verallgemeinerte eine lückenlose Belegung der Ebene mit zwei Kacheln, die ein Jahrzehnt zuvor in Oxford der Kosmologe Roger Penrose als gleichmäßiges Muster mit fünfzähliger Symmetrie vorgeschlagen hatte.

In Tübingen und Stuttgart wurden ab 1985 neue aperiodische Parkettierungen entdeckt, wie das so genannte Tübinger Dreiecksmuster, das Mikulla-Roth- und Gähler-Baake-Tiling.

An der Universität Stuttgart wurden Muster-Quasikristalle simuliert, indem man im Computer die Bahnen der Atome unter gegenseitigen Wechselwirkungen berechnete und prüfte, ob die Struktur erhalten blieb oder sich veränderte. Man untersuchte so auch plastische Verformung, Bruch und Strahlenschädigung von Quasikristallen. Diese theoretisch-numerischen Untersuchungen wurden begleitet durch Experimente am Max-Planck-Institut für Metallforschung in Stuttgart, wo man reale Quasikristalle synthetisierte und experimentell ihre mechanische Belastung und andere physikalische Eigenschaften studierte.

Aktuelle Forschungsschwerpunkte in Stuttgart
Während sich heute viele Forschungsgruppen, vor allem in Japan, den technischen Anwendungen der Quasikristalle widmen, gehen die Wissenschaftler an der Uni Stuttgart einen anderen Weg. Sie wollen die Auswirkungen der quasikristallinen Struktur in anderen als atomaren Systemen untersuchen. Die Gruppe von Prof. Hans-Rainer Trebin am Institut für Theoretische und Angewandte Physik hat ein einfaches Kraftgesetz gefunden, das, wenn man Partikel damit wechselwirken lässt, zweidimensionale Quasikristalle entstehen lässt. So kann man mit diesem Kraftgesetz im Computer die Bewegungen von quasikristallin angeordneten Teilchen berechnen, visualisieren und analysieren. Auch die Gruppe von Prof. Clemens Bechinger vom 2. Physikalischen Institut simuliert Quasikristalle, allerdings im Experiment mit kolloidalen Systemen. Diese bestehen aus Tausenden von Styroporkügelchen von Mikrometer-Maßen, die in einer Flüssigkeit schwimmen und einem Lichtfeld von fünf Lasern ausgesetzt sind. Die Teilchen ordnen sich zu quasikristallinen Strukturen an, die man im Lichtmikroskop beobachtet. Beide Gruppen können somit Erscheinungen der Quasikristalle studieren, zum Beispiel Reibungsphänomene, wie es an den Atomen realer Quasikristalle nicht möglich ist. Die Gruppe von Prof. Harald Gießen vom 4. Physikalischen Institut belegt Metallsubstrate mit quasikristallin angeordneten Goldstrukturen und untersucht, wie diese die Lichtausbreitung beeinflussen.
Ansprechpartner:
Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte Physik, Tel. 0711/685-65255, e-mail: trebin@itap.uni-stuttgart.de

Prof. Clemens Bechinger, 2. Physikalisches Institut, Tel. 0711/685 65218, e-mail: c.bechinger@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten