Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quasar und seine Fata Morgana

06.09.2013
Gaswolke in unserer Milchstraße erzeugt Vielfachbilder vom Kern einer fernen aktiven Galaxie

Eine ionisierte Gaswolke in unserer Milchstraße spaltet das Bild eines Quasars in mehreren Milliarden Lichtjahren Entfernung in mehrere Teilbilder auf. Wie das Bild des aktiven galaktischen Kerns im Detail zerlegt wird, hat ein Team herausgefunden, an dem auch Forscher des Bonner Max-Planck-Instituts für Radioastronomie beteiligt waren.


Schematische, nicht maßstabsgetreue Darstellung, die zeigt, wie die von dem Materiestrahl (Jet) des weit entfernten Quasars erzeugten Radiowellen auf dem Weg zur Erde durch den Einfluss der Materiewolke in unserer Milchstraße verbogen werden und dadurch Mehrfachbilder erzeugen, wie sie mit dem Very Long Baseline Array (VLBA) beobachtet werden. © Bill Saxton, NRAO/AUI/NSF


Grafische Darstellung eines Teils unserer Milchstraße von oben betrachtet. Unsere Sonne befindet sich in ungefähr 25000 Lichtjahren Entfernung vom Zentrum der Milchstraße (im Bild oben rechts). Die gestrichelte Linie zeigt die Richtung zum Quasar 2023+335, die durch die nahegelegene Cygnus-X-Region im lokalen Arm der Milchstraße führt. © R. Hurt, NASA/JPL-CalTech/SSC, nach Abb. 6 in Pushkarev et al.

Phänomene dieser Art wurden bereits in den 1970er-Jahren theoretisch vorhergesagt, nun aber erstmals auch beobachtet. Die Astronomen nutzten für ihre Studie das amerikanische Very Long Baseline Array (VLBA) Teleskop-Netzwerk; die Bonner Max-Planck-Forscher werteten die Daten aus.

Auf den Quasar 2023+335 in fast drei Milliarden Lichtjahren Entfernung von der Erde sind die Wissenschaftler im Rahmen einer Studie an einer Stichprobe von rund 300 solcher Objekte aufmerksam geworden. Die ausgedehnte Untersuchung gilt den zeitlichen Veränderungen im Erscheinungsbild von Quasaren.

Mit dem Kunstwort Quasar bezeichnen Astronomen den Kernbereich einer aktiven Galaxie (auch Active Galactic Nucleus oder AGN). Als sie eine Reihe von Aufnahmen von 2023+335 untersuchten, nahmen sie dramatische Veränderungen im Aussehen dieses Quasars wahr. Diese Veränderungen, so die Forscher, werden dadurch verursacht, dass die von dem Quasar ausgestrahlten Radiowellen durch eine Gaswolke in unserer Milchstraße abgebogen werden. Die Gaswolke bewegt sich in nur 5000 Lichtjahren Entfernung durch die Sichtlinie zum Quasar.

„Genauso wie wir eine Lichtquelle hinter einer gefrorenen Scheibe verbreitert oder sogar in Mehrfachbildern sehen würden, so sehen wir den ‚Tanz‘ dieses Quasars hinter einer Gaswolke unserer Milchstraße", sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie und Mitglied des Forscherteams, das diesen Effekt nun erstmals beobachtet hat. „Es ist ein bisschen so wie eine Fata Morgana an einem heißen Tag in der Wüste, oder wie die Nebensonnen, die aufgrund von Eiswolken das Bild unseres Heimatsterns am Himmel verändern."

Neue Erkenntnisse über turbulente galaktische Gaswolken werden greifbar

„Solche Ereignisse, die allem Anschein nach recht selten sind, zeigen uns einen neuen Weg, um etwas über die Eigenschaften des turbulenten Gases zu erfahren, das einen erheblichen Anteil an der Materie in unserer Milchstraße ausmacht", ergänzt Alexander Pushkarev, der das internationale Forscherteam als Wissenschaftler am Bonner Max-Planck-Institut und am Astrophysikalischen Observatorium Krim in der Ukraine leitete.

Die Wissenschaftler fügten 2023+335 im Jahr 2008 zu ihrer Liste von Beobachtungsobjekten im Rahmen des MOJAVE-Projekts hinzu. Bei den in diesem Projekt untersuchten Quellen handelt es sich um Quasare sowie weitere Galaxien mit supermassereichen Schwarzen Löchern in ihren Zentralregionen. Die Gravitationsenergie dieser Zentralquellen treibt Materiejets an und beschleunigt diese fast bis auf Lichtgeschwindigkeit. Der Quasar 2023+335 zeigte zunächst die typische Struktur für ein solches Objekt, mit einem leuchtkräftigen Kern und einem daraus hervorschießenden Jet. Im Jahr 2009 hat sich die Struktur dieses Objekts dann massiv verändert, wobei eine ganze Reihe von neuen hellen Einzelquellen im Radiofrequenzbereich auftraten.

„Wir haben noch nie vorher ein ähnliches Verhalten festgestellt, weder bei den Hunderten von Quasaren in unserem eigenen Beobachtungsprogramm noch bei den Objekten in anderen Untersuchungen", sagt Eduardo Ros, der seitens des Max-Planck-Instituts für Radioastronomie ebenfalls an der Entdeckung beteiligt.

Gaswolken könnte auch das Licht von anderen Quasaren streuen

Der ungewöhnlichen Erscheinung am Firmament auf die Spur gekommen sind die Forscher durch die Entdeckung von Helligkeitsschwankungen im Radiofrequenzbereich mit anderen Teleskopen, die auf eine Streuung der Wellen im dazwischenliegenden Medium hindeuten. Ihre Analyse deutet darauf hin, dass die Radiostrahlung des Quasars auf ihrem Weg durch eine turbulente Wolke von geladenem Gas abgelenkt wird, die sich in rund 5000 Lichtjahren Entfernung von der Erde in Richtung des Sternbilds Cygnus (der Schwan) befindet. Der Durchmesser der Wolke entspricht ungefähr dem Abstand des Planeten Merkur von der Sonne, ist also für kosmische Maßstäbe recht klein. Die Wolke bewegt sich mit 56 Kilometern pro Sekunde (oder 200.000 Kilometern pro Stunde) quer zur Sichtlinie zwischen der Erde und dem Quasar; das entspricht der Geschwindigkeit der Sonnensonde Helios-2, des schnellsten von Menschen gebauten Vehikels.

„Die systematische Überwachung von 2023+335 dürfte noch weitere Ereignisse dieser Art aufdecken, so dass wir zusätzliche Details sowohl über den Prozess erfahren können, wie die Wellen gestreut werden, als auch über das Gas, das die Streuung bewirkt", fügt Alexander Pushkarev hinzu. „Andere Quasare, die wir durch ähnliche Regionen in der Milchstraße wahrnehmen, könnten ein entsprechendes Verhalten zeigen."

Das Überwachungsprogramm, das diese Entdeckung ermöglicht hat, trägt den Namen MOJAVE ("Monitoring Of Jets in Active galactic nuclei with VLBA Experiments"). Es wird von einem internationalen Forscherteam unter der Leitung von Matt Lister von der Purdue-Universität im US-amerikanischen Indiana vorangetrieben. Die Forscher haben ihre Ergebnisse in der Fachzeitschrift Astronomy and Astrophysics veröffentlicht.

Ansprechpartner

Dr. Alexander Pushkarev
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-255
E-Mail: apushkarev@­mpifr-bonn.mpg.de
Prof. Dr. Eduardo Ros
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-125
E-Mail: ros@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
Fax: +49 228 525-438
E-Mail: njunkes@­mpifr-bonn.mpg.de
Originalpublikation
A.B. Pushkarev, Y.Y. Kovalev, M.L. Lister, T. Hovatta, T. Savolainen, M.F. Aller, H.D. Aller, E. Ros, J.A. Zensus, J.L. Richards, W. Max-Moerbeck, A.C.S. Readhead
VLBA observations of a rare multiple quasar imaging event caused by refraction in the interstellar medium

Astronomy & Astrophysics, July 2013

Dr. Alexander Pushkarev | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7514947/quasar_gaswolke_fata_morgana

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie