Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

QUANTUS - Bose-Einstein-Kondensation in der Schwerelosigkeit

18.06.2010
Wissenschaftlern des Projekts QUANTUS (Quantengase unter Schwerelosigkeit) ist es gelungen, eine Apparatur zur Erzeugung von Bose-Einstein-Kondensaten unter Bedingungen der Schwerelosigkeit zu entwickeln.

Wie das Wissenschaftsmagazin Science in seiner neuesten Ausgabe berichtet, erlaubt diese Apparatur im freien Fall ein atomares Wellenpaket zu generieren und dessen Entstehung zu einem Objekt von Millimetergröße über eine Sekunde lang zu verfolgen.

Die Wissenschaftler haben damit eine vielversprechende und sehr robuste Quelle für Materiewellen entwickelt, die zukünftig in hochpräzisen Messgeräten, den so genannten Atom-Interferometer zur Anwendung kommen können. Zum Einsatz kam das Gerät im 146 Meter hohen Fallturm des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. QUANTUS wird mit Beteiligung von sieben deutschen und drei internationalen Einrichtungen am Institut für Quantenoptik an der Leibniz Universität Hannover koordiniert.

Die Interferometrie mit Materiewellen eröffnet völlig neue Ansätze für Präzisionsmessungen auf dem Gebiet der Metrologie sowie der fundamentalen Physik. Eine vielversprechende Quelle für die Interferometrie sind Bose-Einstein-Kondensate. In diesem Zustand verlieren die Atome ihre eigene Identität und können durch eine einzige Wellenfunktion beschrieben werden. Dieser Materiezustand zeigt große Ähnlichkeit zum Laser und zeichnet sich unter anderem durch ein hohe Kohärenz und Modenqualität aus. Quellen für Bose-Einstein-Kondensaten werden daher oft als Atomlaser bezeichnet. Atomlaser sind ein wichtiger Schlüssel, um zukünftige Atominterferometer im ausgedehnten freien Fall in ihrer Empfindlichkeit und Genauigkeit zu verbessern. So wächst die Empfindlichkeit der Interferometer quadratisch mit der Zeit des freien Falls.

Bei den Experimenten im Fallturm in Bremen ist es den Wissenschaftlern gelungen, im freien Fall ein makroskopisches Wellenpaket mit einer Ausdehnung über mehrere Millimeter zu erzeugen und dessen Evolution über eine Sekunde zu beobachten. Dank seiner dem Laser ähnlichen Eigenschaften konnte dieses Materiewellenpaket, in dem mehr als 10.000 Atome delokalisiert waren, mit Hilfe seines Schattenwurfs abgebildet werden. Mit mehr als 180 Abwürfen ist QUANTUS das komplexeste und zugleich stabilste Experiment, das bisher im Fallturm in Bremen durchgeführt wurde. Die Forschungsergebnisse bilden die Grundlage für zukünftige Experimente, in denen die Evolution eines solchen Quantenobjekts mit Hilfe eines Atom-Interferometers beobachtet und sein Potential als Inertialsensor untersucht werden soll.

Zukünftige Einsatzgebiete von Atom-Interferometern reichen von interdisziplinären Anwendungen bei der Vermessung des Erdschwerefeldes bis hin zu Quantentest des schwachen Äquivalenzprinzips. Das schwache Äquivalenzprinzip ist einer der Eckpfeiler der Allgemeinen Relativitätstheorie. Im Bezug auf Materiewellen fordert das schwache Äquivalenzprinzip, dass Gravitation die Ausdehnung von Materiewellen unabhängig von ihrer Zusammensetzung gleichförmig verändert. Tests des Äquivalenzprinzips ziehen ihre Motivation aus dem Sachverhalt, dass es bisher nicht gelungen ist, die Quantenmechanik und die Allgemeine Relativitätstheorie in einer gemeinsamen Theorie zu vereinheitlichen. Der Test des Äquivalenzprinzips mit Quantenobjekten ist daher ein viel versprechender Ansatz, Einsteins Relativitätstheorie mit Hilfe von Bose-Einstein-Kondensaten zu überprüfen.

Das Projekt QUANTUS ist ein Zusammenschluss deutscher und europäischer Forschungseinrichtungen, darunter die Leibniz Universität Hannover, die Universität Ulm, die Humboldt-Universität zu Berlin, die Universität Hamburg, das Max-Planck-Institut für Quantenoptik, die Universität Darmstadt, die Ecole Normale Superieure de Paris, das Midlands Ultracold Atom Research Center in Birmingham, das DLR Zentrum für Raumfahrtsysteme und das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. Finanziert wurde das Projekt durch die Deutsche Agentur für Luft- und Raumfahrt (DLR) mit Mitteln des Ministeriums für Wirtschaft und Technologie und durch den den Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover.

Der Artikel „Bose-Einstein Condensation in Microgravity“ erscheint am 18. Juni 2010 im Wissenschaftsmagazin Science.

Druckfähiges Foto- und Videomaterial erhalten Sie unter folgenden link:
http://www.student.uni-oldenburg.de/holger.ahlers/Upload/PressKit/PressKit.zip
Weitere Informationen zu QUANTUS unter: http://www.iqo.uni-hannover.de/quantus/
Weitere Informationen zu QUEST unter: http://www.quest.uni-hannover.de

Jessica Lumme | idw
Weitere Informationen:
http://www.quest.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungsnachrichten

Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration

21.07.2017 | Förderungen Preise

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise