Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

QUANTUS - Bose-Einstein-Kondensation in der Schwerelosigkeit

18.06.2010
Wissenschaftlern des Projekts QUANTUS (Quantengase unter Schwerelosigkeit) ist es gelungen, eine Apparatur zur Erzeugung von Bose-Einstein-Kondensaten unter Bedingungen der Schwerelosigkeit zu entwickeln.

Wie das Wissenschaftsmagazin Science in seiner neuesten Ausgabe berichtet, erlaubt diese Apparatur im freien Fall ein atomares Wellenpaket zu generieren und dessen Entstehung zu einem Objekt von Millimetergröße über eine Sekunde lang zu verfolgen.

Die Wissenschaftler haben damit eine vielversprechende und sehr robuste Quelle für Materiewellen entwickelt, die zukünftig in hochpräzisen Messgeräten, den so genannten Atom-Interferometer zur Anwendung kommen können. Zum Einsatz kam das Gerät im 146 Meter hohen Fallturm des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. QUANTUS wird mit Beteiligung von sieben deutschen und drei internationalen Einrichtungen am Institut für Quantenoptik an der Leibniz Universität Hannover koordiniert.

Die Interferometrie mit Materiewellen eröffnet völlig neue Ansätze für Präzisionsmessungen auf dem Gebiet der Metrologie sowie der fundamentalen Physik. Eine vielversprechende Quelle für die Interferometrie sind Bose-Einstein-Kondensate. In diesem Zustand verlieren die Atome ihre eigene Identität und können durch eine einzige Wellenfunktion beschrieben werden. Dieser Materiezustand zeigt große Ähnlichkeit zum Laser und zeichnet sich unter anderem durch ein hohe Kohärenz und Modenqualität aus. Quellen für Bose-Einstein-Kondensaten werden daher oft als Atomlaser bezeichnet. Atomlaser sind ein wichtiger Schlüssel, um zukünftige Atominterferometer im ausgedehnten freien Fall in ihrer Empfindlichkeit und Genauigkeit zu verbessern. So wächst die Empfindlichkeit der Interferometer quadratisch mit der Zeit des freien Falls.

Bei den Experimenten im Fallturm in Bremen ist es den Wissenschaftlern gelungen, im freien Fall ein makroskopisches Wellenpaket mit einer Ausdehnung über mehrere Millimeter zu erzeugen und dessen Evolution über eine Sekunde zu beobachten. Dank seiner dem Laser ähnlichen Eigenschaften konnte dieses Materiewellenpaket, in dem mehr als 10.000 Atome delokalisiert waren, mit Hilfe seines Schattenwurfs abgebildet werden. Mit mehr als 180 Abwürfen ist QUANTUS das komplexeste und zugleich stabilste Experiment, das bisher im Fallturm in Bremen durchgeführt wurde. Die Forschungsergebnisse bilden die Grundlage für zukünftige Experimente, in denen die Evolution eines solchen Quantenobjekts mit Hilfe eines Atom-Interferometers beobachtet und sein Potential als Inertialsensor untersucht werden soll.

Zukünftige Einsatzgebiete von Atom-Interferometern reichen von interdisziplinären Anwendungen bei der Vermessung des Erdschwerefeldes bis hin zu Quantentest des schwachen Äquivalenzprinzips. Das schwache Äquivalenzprinzip ist einer der Eckpfeiler der Allgemeinen Relativitätstheorie. Im Bezug auf Materiewellen fordert das schwache Äquivalenzprinzip, dass Gravitation die Ausdehnung von Materiewellen unabhängig von ihrer Zusammensetzung gleichförmig verändert. Tests des Äquivalenzprinzips ziehen ihre Motivation aus dem Sachverhalt, dass es bisher nicht gelungen ist, die Quantenmechanik und die Allgemeine Relativitätstheorie in einer gemeinsamen Theorie zu vereinheitlichen. Der Test des Äquivalenzprinzips mit Quantenobjekten ist daher ein viel versprechender Ansatz, Einsteins Relativitätstheorie mit Hilfe von Bose-Einstein-Kondensaten zu überprüfen.

Das Projekt QUANTUS ist ein Zusammenschluss deutscher und europäischer Forschungseinrichtungen, darunter die Leibniz Universität Hannover, die Universität Ulm, die Humboldt-Universität zu Berlin, die Universität Hamburg, das Max-Planck-Institut für Quantenoptik, die Universität Darmstadt, die Ecole Normale Superieure de Paris, das Midlands Ultracold Atom Research Center in Birmingham, das DLR Zentrum für Raumfahrtsysteme und das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. Finanziert wurde das Projekt durch die Deutsche Agentur für Luft- und Raumfahrt (DLR) mit Mitteln des Ministeriums für Wirtschaft und Technologie und durch den den Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover.

Der Artikel „Bose-Einstein Condensation in Microgravity“ erscheint am 18. Juni 2010 im Wissenschaftsmagazin Science.

Druckfähiges Foto- und Videomaterial erhalten Sie unter folgenden link:
http://www.student.uni-oldenburg.de/holger.ahlers/Upload/PressKit/PressKit.zip
Weitere Informationen zu QUANTUS unter: http://www.iqo.uni-hannover.de/quantus/
Weitere Informationen zu QUEST unter: http://www.quest.uni-hannover.de

Jessica Lumme | idw
Weitere Informationen:
http://www.quest.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie