Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenzustände aus dem Nichts

15.08.2013
Forscher haben eine neue Methode demonstriert, um äußerst empfindliche Quantenzustände herzustellen, die in Zukunft große Bedeutung erlangen könnten.

Im Gegensatz zur alltäglichen Erfahrung können quantenmechanische Objekte gleichzeitig in mehreren Zuständen existieren. Solche Überlagerungszustände sind jedoch derart empfindlich, dass sie schon durch die Wechselwirkung mit dem Vakuum zerstört werden können.


Bild 1: Detailansicht des Experiments. Die Probe mit den zwischen spiegelnden Schichten eingebetteten Eisenatomen wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen. Foto/Grafik: MPI für Kernphysik


Bild 2: Experimentelle Messdaten (schwarz) im Vergleich zu den theoretischen Vorhersagen (rot). Das Bild zeigt die von den Atomkernen reflektierte Lichtintensität als Funktion der Lichtenergie relativ zur Resonanzenergie. Das Röntgenlicht kann die Atomkerne in verschiedene Zustände anregen, die im Experiment jeweils zu einem Maximum in der gemessenen Lichtintensität führen. Die einzelnen Zustände liegen energetisch dicht beieinander, so dass man eigentlich erwarten würde, dass sich Beiträge der verschiedenen Zustände überlappen. Im Experiment beobachtet man jedoch, dass die Intensität zwischen einzelnen Maxima komplett verschwindet (blaue Bereiche). Die theoretische Analyse zeigt, dass ein derartiges Verhalten auf die vom Vakuum erzeugten Überlagerungszustände zurückzuführen ist. Die verschiedenen Anregungsmöglichkeiten in diesen Überlagerungszustand interferieren, was zum Verschwinden der Lichtintensität führt. Grafik: MPI für Kernphysik

Den Forschern ist es nun gelungen, diese mit dem Vakuum so zu manipulieren, dass das Vakuum diese Überlagerungszustände erzeugt und sogar stabilisiert anstatt sie zu zerstören. Dies eröffnet vielseitige Zukunftsperspektiven für Quantenoptik mit neuartigen Röntgen-Lichtquellen.

Eine der überraschendsten Vorhersagen der Quantenmechanik ist es, dass sich ein Quantenobjekt in mehreren Zuständen gleichzeitig befinden kann. Eine Überlagerung von Zuständen widerspricht der Alltagserfahrung, nach der jedes Objekt stets klar definierte Eigenschaften hat.

Besonders deutlich wird dies in Erwin Schrödingers berühmtem Gedankenexperiment, in dem eine Katze nach den Regeln der Quantenmechanik gleichzeitig in den Zuständen ‚tot‘ und ‚lebendig‘ sein kann. Erst eine Messung entscheidet über das Schicksal der Katze. Trotz der scheinbar absurden Konsequenzen können derartige Überlagerungen mit Quantenobjekten erzeugt werden. Sie sind essentiell für viele Anwendungen der Quantenmechanik, wie z.B. zukünftige Quantencomputer.

Leider sind solche Überlagerungszustände jedoch sehr empfindlich, sodass sie nur in einem vollständig isolierten System überleben können. Doch selbst bei bester experimenteller Realisierung gibt es noch einen quantenmechanischen Störeffekt: Während das Vakuum aus klassischer Sicht leer ist, entstehen im quantenmechanischen Vakuum permanent Teilchen, die nach kürzester Zeit wieder verschwinden.

Bereits die Wechselwirkung dieser unvermeidlichen Vakuumfluktuationen mit dem Überlagerungszustand genügt oft, um ihn zu zerstören. Ein viel versprechender Ausweg ist aus theoretischer Sicht bereits seit mehr als 40 Jahren bekannt. Damals wurde vorhergesagt, dass die Wechselwirkung mit dem Vakuum derart manipuliert werden kann, dass sie stattdessen die gewünschten Überlagerungszustände erzeugt. Leider ist dies jedoch an strenge Bedingungen geknüpft, was die experimentelle Ausnutzung bisher verhindert hat.

Theoretische Überlegungen von Kilian Heeg und Jörg Evers vom MPI für Kernphysik haben nun gezeigt, wie die strikten Bedingungen umgangen werden können. Hierzu ersannen sie zwei Tricks. Zum einen wird der Überlagerungszustand in Atomkernen realisiert, die von zwei Spiegeln umgeben sind. Dadurch lässt sich die Wechselwirkung mit den Teilchen aus dem Vakuum gezielt beeinflussen. Zum anderen betrachten die beiden Theoretiker eine große Zahl von Atomkernen zwischen den Spiegeln, sodass die auftretenden Mechanismen durch kollektive Effekte verstärkt werden. Die beiden Kniffe zusammen erlauben es, robuste Überlagerungen zwischen verschiedenen Anregungszuständen der Atomkerne entstehen zu lassen.

Hans-Christian Wille und Ralf Röhlsberger vom DESY leiteten ein Experiment, mit dem die Erzeugung der Überlagerungszustände durch das Vakuum in guter Übereinstimmung mit den Vorhersagen demonstriert werden konnte. Dazu betteten sie eine große Zahl von Eisenkernen als Schicht von 2,5 Millionstel Millimetern zwischen ähnlich dünne Schichten aus Palladium ein, die als Spiegel wirken. Die so präparierten Kerne wurden dann mit Röntgenstrahlen aus der Synchrotronquelle PETRA III des DESY in Hamburg untersucht. Mit einem unter der Leitung von Ingo Uschmann und Gerhard Paulus (Uni Jena/Helmholtz-Institut Jena) entwickelten sogenannten Röntgenpolarimeter gelang es, das Signal mit bisher unerreichter Effizienz zu detektieren. Die Experimentatoren konnten die Wechselwirkung zwischen dem Vakuum und den Atomkernen durch ein zusätzlich angelegtes schwaches Magnetfeld erfolgreich kontrollieren.

Diese Methode eröffnet vielfältige Möglichkeiten für zukünftige Experimente: Die durch das Vakuum erzeugten Überlagerungszustände können systematisch untersucht und für Anwendungen ausgenutzt werden, denn das jetzt angewendete Schema ist nicht auf den Röntgenbereich beschränkt, sondern funktioniert prinzipiell auch mit sichtbarem Licht. So ergibt sich die Chance, die bisher theoretisch vorgeschlagenen Anwendungen zu realisieren, die von neuartigen Laser-Mechanismen bis hin zur Steigerung der Effizienz von Solarzellen reichen. Möglicherweise gelingt es auch, die Eigenschaften der Atomkerne dynamisch zu verändern. Gleichzeitig zeigt das jetzt erfolgreich durchgeführte Experiment, wie sich störungsfreie und vielseitig konfigurierbare quantenoptische Modellsysteme für Anwendungen mit harter Röntgenstrahlung verwirklichen lassen, was eine interessante Zukunftsperspektive für neuartige Röntgen-Lichtquellen wie den derzeit in Hamburg im Bau befindlichen European XFEL bietet.

Originalveröffentlichung:
Vacuum-assisted generation and control of atomic coherences at x-ray energies
K.P. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K.S. Schulze, B. Marx, T. Kämpfer, G.G. Paulus, R. Röhlsberger, J. Evers

Phys. Rev. Lett. 111, 073601 (2013), DOI: 10.1103/PhysRevLett.111.073601 http://link.aps.org/doi/10.1103/PhysRevLett.111.073601

Kontakt:

Dr. Jörg Evers
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-177
E-Mail: joerg.evers@mpi-hd.mpg.de
Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel.: +49 40 8998-4503
E-Mail: ralf.roehlsberger@desy.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/keitel/evers/index.php
http://petra3.desy.de/index_ger.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften