Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenzustände aus dem Nichts

15.08.2013
Forscher haben eine neue Methode demonstriert, um äußerst empfindliche Quantenzustände herzustellen, die in Zukunft große Bedeutung erlangen könnten.

Im Gegensatz zur alltäglichen Erfahrung können quantenmechanische Objekte gleichzeitig in mehreren Zuständen existieren. Solche Überlagerungszustände sind jedoch derart empfindlich, dass sie schon durch die Wechselwirkung mit dem Vakuum zerstört werden können.


Bild 1: Detailansicht des Experiments. Die Probe mit den zwischen spiegelnden Schichten eingebetteten Eisenatomen wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen. Foto/Grafik: MPI für Kernphysik


Bild 2: Experimentelle Messdaten (schwarz) im Vergleich zu den theoretischen Vorhersagen (rot). Das Bild zeigt die von den Atomkernen reflektierte Lichtintensität als Funktion der Lichtenergie relativ zur Resonanzenergie. Das Röntgenlicht kann die Atomkerne in verschiedene Zustände anregen, die im Experiment jeweils zu einem Maximum in der gemessenen Lichtintensität führen. Die einzelnen Zustände liegen energetisch dicht beieinander, so dass man eigentlich erwarten würde, dass sich Beiträge der verschiedenen Zustände überlappen. Im Experiment beobachtet man jedoch, dass die Intensität zwischen einzelnen Maxima komplett verschwindet (blaue Bereiche). Die theoretische Analyse zeigt, dass ein derartiges Verhalten auf die vom Vakuum erzeugten Überlagerungszustände zurückzuführen ist. Die verschiedenen Anregungsmöglichkeiten in diesen Überlagerungszustand interferieren, was zum Verschwinden der Lichtintensität führt. Grafik: MPI für Kernphysik

Den Forschern ist es nun gelungen, diese mit dem Vakuum so zu manipulieren, dass das Vakuum diese Überlagerungszustände erzeugt und sogar stabilisiert anstatt sie zu zerstören. Dies eröffnet vielseitige Zukunftsperspektiven für Quantenoptik mit neuartigen Röntgen-Lichtquellen.

Eine der überraschendsten Vorhersagen der Quantenmechanik ist es, dass sich ein Quantenobjekt in mehreren Zuständen gleichzeitig befinden kann. Eine Überlagerung von Zuständen widerspricht der Alltagserfahrung, nach der jedes Objekt stets klar definierte Eigenschaften hat.

Besonders deutlich wird dies in Erwin Schrödingers berühmtem Gedankenexperiment, in dem eine Katze nach den Regeln der Quantenmechanik gleichzeitig in den Zuständen ‚tot‘ und ‚lebendig‘ sein kann. Erst eine Messung entscheidet über das Schicksal der Katze. Trotz der scheinbar absurden Konsequenzen können derartige Überlagerungen mit Quantenobjekten erzeugt werden. Sie sind essentiell für viele Anwendungen der Quantenmechanik, wie z.B. zukünftige Quantencomputer.

Leider sind solche Überlagerungszustände jedoch sehr empfindlich, sodass sie nur in einem vollständig isolierten System überleben können. Doch selbst bei bester experimenteller Realisierung gibt es noch einen quantenmechanischen Störeffekt: Während das Vakuum aus klassischer Sicht leer ist, entstehen im quantenmechanischen Vakuum permanent Teilchen, die nach kürzester Zeit wieder verschwinden.

Bereits die Wechselwirkung dieser unvermeidlichen Vakuumfluktuationen mit dem Überlagerungszustand genügt oft, um ihn zu zerstören. Ein viel versprechender Ausweg ist aus theoretischer Sicht bereits seit mehr als 40 Jahren bekannt. Damals wurde vorhergesagt, dass die Wechselwirkung mit dem Vakuum derart manipuliert werden kann, dass sie stattdessen die gewünschten Überlagerungszustände erzeugt. Leider ist dies jedoch an strenge Bedingungen geknüpft, was die experimentelle Ausnutzung bisher verhindert hat.

Theoretische Überlegungen von Kilian Heeg und Jörg Evers vom MPI für Kernphysik haben nun gezeigt, wie die strikten Bedingungen umgangen werden können. Hierzu ersannen sie zwei Tricks. Zum einen wird der Überlagerungszustand in Atomkernen realisiert, die von zwei Spiegeln umgeben sind. Dadurch lässt sich die Wechselwirkung mit den Teilchen aus dem Vakuum gezielt beeinflussen. Zum anderen betrachten die beiden Theoretiker eine große Zahl von Atomkernen zwischen den Spiegeln, sodass die auftretenden Mechanismen durch kollektive Effekte verstärkt werden. Die beiden Kniffe zusammen erlauben es, robuste Überlagerungen zwischen verschiedenen Anregungszuständen der Atomkerne entstehen zu lassen.

Hans-Christian Wille und Ralf Röhlsberger vom DESY leiteten ein Experiment, mit dem die Erzeugung der Überlagerungszustände durch das Vakuum in guter Übereinstimmung mit den Vorhersagen demonstriert werden konnte. Dazu betteten sie eine große Zahl von Eisenkernen als Schicht von 2,5 Millionstel Millimetern zwischen ähnlich dünne Schichten aus Palladium ein, die als Spiegel wirken. Die so präparierten Kerne wurden dann mit Röntgenstrahlen aus der Synchrotronquelle PETRA III des DESY in Hamburg untersucht. Mit einem unter der Leitung von Ingo Uschmann und Gerhard Paulus (Uni Jena/Helmholtz-Institut Jena) entwickelten sogenannten Röntgenpolarimeter gelang es, das Signal mit bisher unerreichter Effizienz zu detektieren. Die Experimentatoren konnten die Wechselwirkung zwischen dem Vakuum und den Atomkernen durch ein zusätzlich angelegtes schwaches Magnetfeld erfolgreich kontrollieren.

Diese Methode eröffnet vielfältige Möglichkeiten für zukünftige Experimente: Die durch das Vakuum erzeugten Überlagerungszustände können systematisch untersucht und für Anwendungen ausgenutzt werden, denn das jetzt angewendete Schema ist nicht auf den Röntgenbereich beschränkt, sondern funktioniert prinzipiell auch mit sichtbarem Licht. So ergibt sich die Chance, die bisher theoretisch vorgeschlagenen Anwendungen zu realisieren, die von neuartigen Laser-Mechanismen bis hin zur Steigerung der Effizienz von Solarzellen reichen. Möglicherweise gelingt es auch, die Eigenschaften der Atomkerne dynamisch zu verändern. Gleichzeitig zeigt das jetzt erfolgreich durchgeführte Experiment, wie sich störungsfreie und vielseitig konfigurierbare quantenoptische Modellsysteme für Anwendungen mit harter Röntgenstrahlung verwirklichen lassen, was eine interessante Zukunftsperspektive für neuartige Röntgen-Lichtquellen wie den derzeit in Hamburg im Bau befindlichen European XFEL bietet.

Originalveröffentlichung:
Vacuum-assisted generation and control of atomic coherences at x-ray energies
K.P. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K.S. Schulze, B. Marx, T. Kämpfer, G.G. Paulus, R. Röhlsberger, J. Evers

Phys. Rev. Lett. 111, 073601 (2013), DOI: 10.1103/PhysRevLett.111.073601 http://link.aps.org/doi/10.1103/PhysRevLett.111.073601

Kontakt:

Dr. Jörg Evers
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-177
E-Mail: joerg.evers@mpi-hd.mpg.de
Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel.: +49 40 8998-4503
E-Mail: ralf.roehlsberger@desy.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/keitel/evers/index.php
http://petra3.desy.de/index_ger.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie