Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenzauber im Molekül: springen statt schwingen

16.02.2012
Elektronen springen in ionisiertem Wasserstoff zwischen verschiedenen angeregten Zuständen hin und her. Das in der Theorie bereits bekannte Phänomen haben Physiker nun mit einer „Quanten-Kamera“ sichtbar gemacht.

So gern ein Kind auf einer Schaukel an den höchsten Punkten der Bahn ist, muss es zwangsläufig auch durch den tiefsten Punkt schaukeln. Auf einer quantenmechanischen Schaukel wäre das anders: Dort könnte es zwischen den beiden Umkehrpunkten hin und her wechseln, ohne jemals in der Mitte vorbei zu kommen.


Bevorzugte Aufenthaltsorte von Protonen im einfach ionisierten Wasserstoffmolekül (gelb markiert die höchste Wahrscheinlichkeit). Die Messpunkte liegen genau in den Bergen der theoretisch berechneten Wellenfunktion (grün). Je höher die Energie der Anregungszustände ist, desto mehr bevorzugte Orte gibt es. Genau dazwischen sind die Protonen allerdings nie anzutreffen. Bild: Lothar Schmidt

Das wissen Physiker von Atomen, die in Molekülen gegeneinander schwingen und dabei bestimmte Abstände voneinander bevorzugen. Der Arbeitsgruppe von Reinhard Dörner an der Goethe-Universität ist es nun gelungen, dieses theoretisch vorhergesagte Phänomen mithilfe einer neu entwickelten „Quanten-Kamera“ sichtbar zu machen.

„Diese Bilder werden künftig in jedem Chemie-Lehrbuch zu sehen sein“, ist Prof. Reinhard Dörner vom Institut für Kernphysik überzeugt. Zwar hat zuvor niemand an dem Phänomen gezweifelt, aber es ist schon etwas Besonderes, wenn man ergänzend zu den quantenmechanisch berechneten Kurven auch Bilder von den tatsächlich gemessenen Aufenthaltsorten der Atome sehen kann. In diesem Fall handelt es sich um das einfachste schwingende System: zwei Wasserstoff-Kerne (Protonen), welche durch ein einziges Elektron chemisch gebunden sind, also ein ionisiertes Wasserstoffmolekül.

Um herauszufinden, wo sich die Protonen in dem schwingenden Molekül aufhalten, verfeinerte Lothar Schmidt, Wissenschaftler in der Arbeitsgruppe von Dörner, eine bereits bekannte Technik, bei der das Molekül durch Stöße mit einem Heliumatom aufgebrochen wird. Im langsamen Vorbeiflug nimmt das ionisierte Wasserstoffmolekül beim Stoß ein Elektron des Heliums auf. Etwa jedes zehnte neutrale Wasserstoffmolekül gerät dabei in einen angeregten elektronischen Zustand, der dazu führt, dass es auseinander bricht und als zwei einzelne Wasserstoffatome zum Detektor fliegt. Dabei wird der winzige Abstand der Protonen im Molekül zwischen den Bruchstücken wie durch eine Lupe vergrößert: Die Auftreffpunkte im Detektor spiegeln die ursprünglichen Abstandsverhältnisse im Molekül wider.

Das System wird durch diese als „Coulomb Explosion Imaging“ bezeichnete Technik vom Mikrokosmos der Quantenwelt in den Makrokosmos überführt, wo die Gesetze der klassischen Mechanik gelten. „Es steckt eine anspruchsvolle Physik dahinter zu verstehen, warum wir mit einer Ortsauflösung messen können, die nach den Regeln der Heisenbergschen Unbestimmtheitsrelation nicht möglich ist“, sagt Dörner.

Und eine Menge Hartnäckigkeit und experimentelles Geschick: Als Lothar Schmidt vor anderthalb Jahren erklärte, er wolle die Auflösung der Apparatur so verfeinern, dass man die verschiedenen Schwingungsmoden der angeregten Moleküle sichtbar machen könne, waren Dörner und die anderen Wissenschaftler der Arbeitsgruppe skeptisch. Dazu muss man wissen, dass auch die Analyse der Heliumatome, die als Stoßpartner dienen, wichtige Informationen über den Anregungszustand der auftreffenden ionisierten Wasserstoffmoleküle liefern. Allerdings nur, wenn es gelingt, die Wärmebewegung der Heliumatome durch spezielle Kühltechniken mehr oder weniger einzufrieren. Denn sonst sind ihre Zitterbewegungen so stark, dass die zu messenden Molekülschwingungen im Rauschen untergehen. Dies war nur eine der Herausforderungen, die Schmidt zu meistern wusste.

Die Bilder zeigen nun, dass Protonen sich tatsächlich an bestimmten Aufenthaltsorten im Molekül häufen und anderswo, zum Beispiel an den dazwischen liegenden Punkten, nie anzutreffen sind. Für die Physiker werden die Vorhersagen der Quantenmechanik damit noch ein Stück greifbar, wenn auch nicht verständlicher.

Publikation:
Lothar Schmidt et al: Spatial imaging oft he H2+ vibrational wave function at the quantum limit, Physical Review Letters, Vol.108, No.7, DOI: 10.1103/PhysRevLett.108.073202

Informationen: Prof. Reinhard Dörner, Lothar Schmidt, Institut für Kernphysik, Campus Riedberg, Tel: (069) 798- 47003 bzw. 47025; doerner(at)atom.uni-frankfurt.de; schmidt(at) atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Berichte zu: Atom Elektron Heliumatom Kernphysik Molekül Physik ProTon Quantenzauber Wasserstoffmolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics