Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenzauber im Molekül: springen statt schwingen

16.02.2012
Elektronen springen in ionisiertem Wasserstoff zwischen verschiedenen angeregten Zuständen hin und her. Das in der Theorie bereits bekannte Phänomen haben Physiker nun mit einer „Quanten-Kamera“ sichtbar gemacht.

So gern ein Kind auf einer Schaukel an den höchsten Punkten der Bahn ist, muss es zwangsläufig auch durch den tiefsten Punkt schaukeln. Auf einer quantenmechanischen Schaukel wäre das anders: Dort könnte es zwischen den beiden Umkehrpunkten hin und her wechseln, ohne jemals in der Mitte vorbei zu kommen.


Bevorzugte Aufenthaltsorte von Protonen im einfach ionisierten Wasserstoffmolekül (gelb markiert die höchste Wahrscheinlichkeit). Die Messpunkte liegen genau in den Bergen der theoretisch berechneten Wellenfunktion (grün). Je höher die Energie der Anregungszustände ist, desto mehr bevorzugte Orte gibt es. Genau dazwischen sind die Protonen allerdings nie anzutreffen. Bild: Lothar Schmidt

Das wissen Physiker von Atomen, die in Molekülen gegeneinander schwingen und dabei bestimmte Abstände voneinander bevorzugen. Der Arbeitsgruppe von Reinhard Dörner an der Goethe-Universität ist es nun gelungen, dieses theoretisch vorhergesagte Phänomen mithilfe einer neu entwickelten „Quanten-Kamera“ sichtbar zu machen.

„Diese Bilder werden künftig in jedem Chemie-Lehrbuch zu sehen sein“, ist Prof. Reinhard Dörner vom Institut für Kernphysik überzeugt. Zwar hat zuvor niemand an dem Phänomen gezweifelt, aber es ist schon etwas Besonderes, wenn man ergänzend zu den quantenmechanisch berechneten Kurven auch Bilder von den tatsächlich gemessenen Aufenthaltsorten der Atome sehen kann. In diesem Fall handelt es sich um das einfachste schwingende System: zwei Wasserstoff-Kerne (Protonen), welche durch ein einziges Elektron chemisch gebunden sind, also ein ionisiertes Wasserstoffmolekül.

Um herauszufinden, wo sich die Protonen in dem schwingenden Molekül aufhalten, verfeinerte Lothar Schmidt, Wissenschaftler in der Arbeitsgruppe von Dörner, eine bereits bekannte Technik, bei der das Molekül durch Stöße mit einem Heliumatom aufgebrochen wird. Im langsamen Vorbeiflug nimmt das ionisierte Wasserstoffmolekül beim Stoß ein Elektron des Heliums auf. Etwa jedes zehnte neutrale Wasserstoffmolekül gerät dabei in einen angeregten elektronischen Zustand, der dazu führt, dass es auseinander bricht und als zwei einzelne Wasserstoffatome zum Detektor fliegt. Dabei wird der winzige Abstand der Protonen im Molekül zwischen den Bruchstücken wie durch eine Lupe vergrößert: Die Auftreffpunkte im Detektor spiegeln die ursprünglichen Abstandsverhältnisse im Molekül wider.

Das System wird durch diese als „Coulomb Explosion Imaging“ bezeichnete Technik vom Mikrokosmos der Quantenwelt in den Makrokosmos überführt, wo die Gesetze der klassischen Mechanik gelten. „Es steckt eine anspruchsvolle Physik dahinter zu verstehen, warum wir mit einer Ortsauflösung messen können, die nach den Regeln der Heisenbergschen Unbestimmtheitsrelation nicht möglich ist“, sagt Dörner.

Und eine Menge Hartnäckigkeit und experimentelles Geschick: Als Lothar Schmidt vor anderthalb Jahren erklärte, er wolle die Auflösung der Apparatur so verfeinern, dass man die verschiedenen Schwingungsmoden der angeregten Moleküle sichtbar machen könne, waren Dörner und die anderen Wissenschaftler der Arbeitsgruppe skeptisch. Dazu muss man wissen, dass auch die Analyse der Heliumatome, die als Stoßpartner dienen, wichtige Informationen über den Anregungszustand der auftreffenden ionisierten Wasserstoffmoleküle liefern. Allerdings nur, wenn es gelingt, die Wärmebewegung der Heliumatome durch spezielle Kühltechniken mehr oder weniger einzufrieren. Denn sonst sind ihre Zitterbewegungen so stark, dass die zu messenden Molekülschwingungen im Rauschen untergehen. Dies war nur eine der Herausforderungen, die Schmidt zu meistern wusste.

Die Bilder zeigen nun, dass Protonen sich tatsächlich an bestimmten Aufenthaltsorten im Molekül häufen und anderswo, zum Beispiel an den dazwischen liegenden Punkten, nie anzutreffen sind. Für die Physiker werden die Vorhersagen der Quantenmechanik damit noch ein Stück greifbar, wenn auch nicht verständlicher.

Publikation:
Lothar Schmidt et al: Spatial imaging oft he H2+ vibrational wave function at the quantum limit, Physical Review Letters, Vol.108, No.7, DOI: 10.1103/PhysRevLett.108.073202

Informationen: Prof. Reinhard Dörner, Lothar Schmidt, Institut für Kernphysik, Campus Riedberg, Tel: (069) 798- 47003 bzw. 47025; doerner(at)atom.uni-frankfurt.de; schmidt(at) atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Berichte zu: Atom Elektron Heliumatom Kernphysik Molekül Physik ProTon Quantenzauber Wasserstoffmolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten