Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quantenwelt in Reichweite

09.06.2009
Durch Kombination von Heliumkühlung und aufgelöster Seitenband-Laserkühlung nähern sich MPQ-Wissenschaftler der quantenmechanischen Grenze der Eigenmoden eines mesoskopischen Oszillators.

Seit der Formulierung der Quantenmechanik möchten Wissenschaftler Quantenphänomene an makroskopischen mechanischen Schwingungssystemen beobachten.

Sie könnten daraus lernen, wie sich Systeme an der Grenze zwischen klassischer und quantenmechanischer Welt verhalten, sowie die "Theorie der Quantenmessung" experimentell überprüfen. Allen Anstrengungen zum Trotz ließen sich die winzigen quantenphysikalisch bedingten Auslenkungen, und die thermische Bewegung eines Oszillators noch nicht direkt beobachten.

Wie ein Team um Prof. Tobias Kippenberg, Leiter der Nachwuchsgruppe "Laboratory of Photonics and Quantum Measurements" am Max-Planck-Institut für Quantenoptik (MPQ) in Garching, und Tenure Track Assistant Professor an der ETH-Lausanne, in der Zeitschrift Nature Physics (Advanced Online Publication, 7. Juni 2009, DOI 10. 1038/NPHYS1304) berichtet, scheint der ultimative Quantengrundzustand eines mesoskopischen Objekts nun in Reichweite zu sein. Durch Kombination von Heliumkühlung und aufgelöster Seitenband-Laserkühlung konnten die Wissenschaftler einen Mirkoresonator so stark abkühlen, dass seine Temperatur nur noch dem 60-fachen der Quantengrundzustandsenergie entspricht. Gleichzeitig erreichten sie bei der Messung der Schwingungsamplituden eine Genauigkeit, die nur noch das etwa 100-fache der fundamentalen Heisenberggrenze beträgt.

Ein mechanisches Schwingungssystem ist für den Physiker der Inbegriff eines vielfach verwendeten Systems, des harmonischen Oszillators. Gleichzeitig aber ist es, wie z.B. eine Sprungfeder oder ein einfaches Pendel, überall im Alltag anzutreffen. Obwohl es sich im Allgemeinen klassisch verhält, sagt die Theorie der Quantenmechanik überraschende Effekte sowohl für den mechanischen Oszillator als auch für die an ihm vorgenommenen Messungen vorher. Ein solcher Oszillator - so die Theorie - ist praktisch niemals in Ruhe, sondern vollführt kleine zufällige Bewegungen um seine Gleichgewichtslage. Bei höheren Temperaturen sind diese möglicherweise auf Stöße mit Molekülen in der Umgebung, oder auf die thermische Bewegung der in ihm enthaltenen Moleküle zurückzuführen. Aber nach der Quantenmechanik kommen diese Bewegungen auch am absoluten Temperaturnullpunkt nicht zum Stillstand. Messungen der Position des Oszillators und seiner Auslenkungen stören das System und verstärken diese Fluktuationen noch. Durch diese quantenmechanische "Rückwirkung" ist die Messgenauigkeit fundamental auf die "Heisenbergsche Unschärfegrenze" beschränkt.

Bis heute sind diese Effekte noch nicht experimentell beobachtet worden. Ihr Nachweis ist aber der Schlüssel, um die Grenze zwischen der klassisch regulierten Welt und quantenmechanischen Systemen zu verstehen, und die Vorhersagen der Theorie der Quantenmessungen quantitativ zu bestätigen. Dabei gibt es jedoch zwei Hürden zu überwinden: zum einen muss das thermische Rauschen unterdrückt werden, zum anderen müssen die extrem kleinen Schwingungsamplituden messtechnisch erfassbar werden. Bislang experimentierten die Forscher vor allem mit Schwingungssystemen von Nanometergröße. Doch trotz deren kleiner Masse (mit der größere Quantenfluktuationen verknüpft sind) blieb die Messempfindlichkeit weit oberhalb des "Heisenberglimits".

Tobias Kippenberg und sein Team entwickelten stattdessen optomechanische Systeme aus kleinen Glasringen mit einem Durchmesser von 0,1 Millimeter, die - bei Schwingungsfrequenzen zwischen 65 und 122 MHZ - eine extrem geringe Dämpfung aufweisen. Durch Kontakt mit Helium-Gas bei niedrigem Druck kühlten sie das System auf 1,65 Kelvin ab. Unter Verwendung der aufgelösten Seitenband-Laserkühlung1 konnten sie die Temperatur auf 200 Millikelvin erniedrigen. Dies entspricht einer Bewegungsenergie des Oszillators von 60 Schwingungsquanten und ist der bislang mit Abstand niedrigste erreichte Wert für Oszillatoren dieser Größenordnung.

Die bei dieser Temperatur extrem geringen Auslenkungen bestimmten die Wissenschaftler mit optischer Interferometrie. Indem sie sicher stellten, dass nur noch die Fluktuationen im Strom der nachgewiesenen Lichtquanten ein Hintergrundrauschen bildeten, erreichten sie - gemittelt über eine Sekunde Messzeit - eine Genauigkeit von einigen Attometern (1am=0.000000000000000001m). "Wenn wir uns die Größe der Fluktuationen anschauen, können wir auf die Störung schließen, die unsere Messung verursacht, d.h., wir können die quantenmechanische 'Rückwirkung' quantifizieren", erklärt Albert Schließer, Doktorand am Experiment.

Mit ihren optischen Messtechniken hat die Gruppe eine Genauigkeit erzielt, die nur 100fach über dem Heisenbergschen Unschärfelimit liegt. So nah ist bisher noch kein Experiment gekommen. Auch bei der nächsten Generation von MPQ-Experimenten wird es sich darum drehen, mechanische Schwingungssysteme auf extrem tiefe Temperaturen abzukühlen und Messungen nahe am Heisenbergschen Limit durchzuführen. Damit sollen Effekte wie Quantengrundzustand und Quantenrückwirkung noch deutlicher demonstriert werden. [OM/AS]

Originalveröffentlichung:
Resolved Sideband Cooling and Position Measurement of a Micromechanical Oscillator close to the Heisenberg Uncertainty Limit.
A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys1304 (2009)
Kontakt:
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Albert Schließer
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 264
Fax: +49 - 89 / 32905 200
E-Mail: albert.schliesser@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse- und Öffentlichkeitsarbeit
Tel.: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie wirksam sind Haftvermittler? Fraunhofer nutzt Flüssigkeitschromatographie zur Charakterisierung

17.10.2017 | Materialwissenschaften

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie