Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quantenwelt in Reichweite

09.06.2009
Durch Kombination von Heliumkühlung und aufgelöster Seitenband-Laserkühlung nähern sich MPQ-Wissenschaftler der quantenmechanischen Grenze der Eigenmoden eines mesoskopischen Oszillators.

Seit der Formulierung der Quantenmechanik möchten Wissenschaftler Quantenphänomene an makroskopischen mechanischen Schwingungssystemen beobachten.

Sie könnten daraus lernen, wie sich Systeme an der Grenze zwischen klassischer und quantenmechanischer Welt verhalten, sowie die "Theorie der Quantenmessung" experimentell überprüfen. Allen Anstrengungen zum Trotz ließen sich die winzigen quantenphysikalisch bedingten Auslenkungen, und die thermische Bewegung eines Oszillators noch nicht direkt beobachten.

Wie ein Team um Prof. Tobias Kippenberg, Leiter der Nachwuchsgruppe "Laboratory of Photonics and Quantum Measurements" am Max-Planck-Institut für Quantenoptik (MPQ) in Garching, und Tenure Track Assistant Professor an der ETH-Lausanne, in der Zeitschrift Nature Physics (Advanced Online Publication, 7. Juni 2009, DOI 10. 1038/NPHYS1304) berichtet, scheint der ultimative Quantengrundzustand eines mesoskopischen Objekts nun in Reichweite zu sein. Durch Kombination von Heliumkühlung und aufgelöster Seitenband-Laserkühlung konnten die Wissenschaftler einen Mirkoresonator so stark abkühlen, dass seine Temperatur nur noch dem 60-fachen der Quantengrundzustandsenergie entspricht. Gleichzeitig erreichten sie bei der Messung der Schwingungsamplituden eine Genauigkeit, die nur noch das etwa 100-fache der fundamentalen Heisenberggrenze beträgt.

Ein mechanisches Schwingungssystem ist für den Physiker der Inbegriff eines vielfach verwendeten Systems, des harmonischen Oszillators. Gleichzeitig aber ist es, wie z.B. eine Sprungfeder oder ein einfaches Pendel, überall im Alltag anzutreffen. Obwohl es sich im Allgemeinen klassisch verhält, sagt die Theorie der Quantenmechanik überraschende Effekte sowohl für den mechanischen Oszillator als auch für die an ihm vorgenommenen Messungen vorher. Ein solcher Oszillator - so die Theorie - ist praktisch niemals in Ruhe, sondern vollführt kleine zufällige Bewegungen um seine Gleichgewichtslage. Bei höheren Temperaturen sind diese möglicherweise auf Stöße mit Molekülen in der Umgebung, oder auf die thermische Bewegung der in ihm enthaltenen Moleküle zurückzuführen. Aber nach der Quantenmechanik kommen diese Bewegungen auch am absoluten Temperaturnullpunkt nicht zum Stillstand. Messungen der Position des Oszillators und seiner Auslenkungen stören das System und verstärken diese Fluktuationen noch. Durch diese quantenmechanische "Rückwirkung" ist die Messgenauigkeit fundamental auf die "Heisenbergsche Unschärfegrenze" beschränkt.

Bis heute sind diese Effekte noch nicht experimentell beobachtet worden. Ihr Nachweis ist aber der Schlüssel, um die Grenze zwischen der klassisch regulierten Welt und quantenmechanischen Systemen zu verstehen, und die Vorhersagen der Theorie der Quantenmessungen quantitativ zu bestätigen. Dabei gibt es jedoch zwei Hürden zu überwinden: zum einen muss das thermische Rauschen unterdrückt werden, zum anderen müssen die extrem kleinen Schwingungsamplituden messtechnisch erfassbar werden. Bislang experimentierten die Forscher vor allem mit Schwingungssystemen von Nanometergröße. Doch trotz deren kleiner Masse (mit der größere Quantenfluktuationen verknüpft sind) blieb die Messempfindlichkeit weit oberhalb des "Heisenberglimits".

Tobias Kippenberg und sein Team entwickelten stattdessen optomechanische Systeme aus kleinen Glasringen mit einem Durchmesser von 0,1 Millimeter, die - bei Schwingungsfrequenzen zwischen 65 und 122 MHZ - eine extrem geringe Dämpfung aufweisen. Durch Kontakt mit Helium-Gas bei niedrigem Druck kühlten sie das System auf 1,65 Kelvin ab. Unter Verwendung der aufgelösten Seitenband-Laserkühlung1 konnten sie die Temperatur auf 200 Millikelvin erniedrigen. Dies entspricht einer Bewegungsenergie des Oszillators von 60 Schwingungsquanten und ist der bislang mit Abstand niedrigste erreichte Wert für Oszillatoren dieser Größenordnung.

Die bei dieser Temperatur extrem geringen Auslenkungen bestimmten die Wissenschaftler mit optischer Interferometrie. Indem sie sicher stellten, dass nur noch die Fluktuationen im Strom der nachgewiesenen Lichtquanten ein Hintergrundrauschen bildeten, erreichten sie - gemittelt über eine Sekunde Messzeit - eine Genauigkeit von einigen Attometern (1am=0.000000000000000001m). "Wenn wir uns die Größe der Fluktuationen anschauen, können wir auf die Störung schließen, die unsere Messung verursacht, d.h., wir können die quantenmechanische 'Rückwirkung' quantifizieren", erklärt Albert Schließer, Doktorand am Experiment.

Mit ihren optischen Messtechniken hat die Gruppe eine Genauigkeit erzielt, die nur 100fach über dem Heisenbergschen Unschärfelimit liegt. So nah ist bisher noch kein Experiment gekommen. Auch bei der nächsten Generation von MPQ-Experimenten wird es sich darum drehen, mechanische Schwingungssysteme auf extrem tiefe Temperaturen abzukühlen und Messungen nahe am Heisenbergschen Limit durchzuführen. Damit sollen Effekte wie Quantengrundzustand und Quantenrückwirkung noch deutlicher demonstriert werden. [OM/AS]

Originalveröffentlichung:
Resolved Sideband Cooling and Position Measurement of a Micromechanical Oscillator close to the Heisenberg Uncertainty Limit.
A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys1304 (2009)
Kontakt:
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Albert Schließer
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 264
Fax: +49 - 89 / 32905 200
E-Mail: albert.schliesser@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse- und Öffentlichkeitsarbeit
Tel.: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie