Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenverschränkung erstmals live auf Kamera

29.05.2013
Die intuitiv schwer nachvollziehbaren Folgen der Quantenverschränkung wurden erstmals direkt mit einer Kamera festgehalten.

Ein Forscherteam rund um den Wiener Physiker Anton Zeilinger zeigt mit Hilfe eines neuartigen Aufnahmeverfahrens in Echtzeit, wie sich eine Messung an einem Lichtteilchen auf ein mit ihm verschränkten Partnerteilchen auswirkt. Die Ergebnisse wurden in "Scientific Reports", der Open-Access-Zeitschrift des Herausgebers des renommierten Fachjournals "Nature", publiziert.


Aufnahme der Struktur einer "Lichtmode" (zusammengesetzt aus vielen einzelnen Lichtteilchen, dargestellt als weiße Punkte)
Copyright: Robert Fickler / IQOQI WIEN


Aufnahme einer wesentlich komplexeren Lichtmode (zusammengesetzt aus vielen einzelnen Lichtteilchen, dargestellt als weiße Punkte)
Copyright: Robert Fickler / IQOQI WIEN

Die Verschränkung zweier oder mehrere Objekte ist eines der grundlegendsten Phänomene der Quantenphysik, aber auch eines, welches unserer Intuition besonders deutlich widerstrebt. Verschränkte Teilchen verhalten sich nämlich so, als ob sie sich gegenseitig selbst dann beeinflussen könnten, wenn sie räumlich weit voneinander entfernt sind. Dies steht in krassem Widerspruch zur klassischen Physik, wo Abläufe ausschließlich durch räumlich nahe Ereignisse beeinflusst werden. Albert Einstein bezeichnete die von der Quantentheorie vorhergesagte ortsunabhängige Einflussnahme eines Teilchens auf ein anderes als "spukhafte Fernwirkung" und war überzeugt, dass dieses "Paradoxon" darauf hinweist, dass die Quantentheorie ergänzt werden muss, wenn sie Vorgänge in der Natur komplett beschrieben soll.

In den vergangenen vierzig Jahren wurden jedoch zahlreiche Experimente durchgeführt, die eindeutig zeigen, dass diese Fernwirkung in der Tat existiert. Die Resultate dieser Versuche sind klar: die Quantenphysik kann Beobachtungen korrekt und vollständig beschreiben, selbst wenn diese mit unserer Alltagserfahrung nicht in Einklang zu bringen sind. Diese wichtigen Experimente haben aber nur beschränkt dazu beigetragen, ein intuitives Gefühl für das Phänomen der Verschränkung zu entwickeln. Zu sehr basieren die Schlüsse auf Berechnungen. Mit dem Versuch der Wiener Physiker, in denen sie erstmals die verblüffenden Verschränkungseffekte mit einer Kamera festhalten, wird das Phänomen nun augenscheinlich. "In diesem Experiment ist es erstmals möglich, Einsteins spukhafte Fernwirkung anschaulich in Echtzeit zu sehen", sagt Anton Zeilinger.

Echtzeitaufnahmen von verschränkten Photonen

In den neuen Experimenten wurden mittels einer kürzlich entwickelten Methode Paare verschränkter Lichtteilchen, sogenannter Photonen, erzeugt. Eines der beiden Teilchen ist so gewählt, dass ein komplexes räumliches Muster entsteht, wenn eine große Zahl von Photonen mit Hilfe einer hochsensitiven Kamera aufgenommen werden – vorausgesetzt, dass diese jeweils zum richtigen Zeitpunkt ausgelöst wird. Als Startsignal zur Echtzeitaufnahme dient das zweite Photon, welches in einer herkömmlichen Messapparatur detektiert wird. Das mit der Kamera aufgenommene Photon muss erst mehr als 35 Meter durch eine Glasfaser zurücklegen, ehe es "fotografiert" wird. Dort angekommen, hängt das beobachtete Muster jedoch davon ab, was genau mit dem ersten Teilchen geschehen ist. "Die Einstellung der Messapparatur für das erste Teilchen bestimmt, wie das Muster aussieht, welches das zweite Teilchen auf der Kamera hinterlässt, und dies, obwohl die beiden Messgeräte unabhängig voneinander sind und verschiedene Photonen messen, die deutlich räumlich voneinander getrennt sind", erklärt Robert Fickler, Erstautor der Arbeit. Das Startsignal enthält keine Information darüber, wie genau das erste Photon gemessen wurde, und auch sonst erhält die Kamera keine Auskunft über die Einstellungen der anderen Messapparatur. Aber trotzdem hängt das von der Kamera gemessene Muster von der vorhergehenden Messung am ersten Photon ab – genau, wie die Quantentheorie es voraussagt.
Mit diesem Experiment wird die durch die Quantenverschränkung vermittelte Fernwirkung erstmals direkt sichtbar, nicht nur in abstrakten Zahlenwerten, sondern in anschaulichen Bildern. Gleichzeitig sind diese Versuche aber mehr als ein Demonstrationsexperiment. Die neu entwickelte Methode ermöglicht es, komplexe Lichtstrukturen schnell und effizient zu detektieren. Dies könnte neue Perspektiven für zukünftige Anwendungen eröffnen, sagt Zeilinger: "Die hohe zeitliche und örtliche Auflösung, mit der wir Quanteneffekte messen können, bietet neue experimentelle Möglichkeiten in den Gebieten der Quantenoptik und der Quantentechnologien, etwa im Bereich der Quanteninformatik oder der Quantenkryptographie."

Die Forschung wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie dem österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF).
Publikation
Real-Time Imaging of Quantum Entanglement. Robert Fickler, Mario Krenn, Radek Lapkiewicz, Sven Ramelow, Anton Zeilinger. Scientific Reports 3: 1914 (DOI: 10.1038/srep01914).

Weitere Informationen
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/
Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at/

Der beschriebene Film ist online verfügbar unter: http://youtu.be/wGkx1MUw2TU

Wissenschaftlicher Kontakt
Dipl. Phys. Robert Fickler
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien, Fakultät für Physik
Institut für Quantenoptik und Quanteninformation (ÖAW)
Boltzmanngasse 3, 1090 Wien
T +43-1-4277-295 68
robert.fickler@univie.ac.at

Rückfragehinweis
Sekretariat Prof. Zeilinger
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien, Fakultät für Physik
Institut für Quantenoptik und Quanteninformation (ÖAW)
Boltzmanngasse 3, 1090 Wien
T +43-1-4277-511 66
zeilinger-office@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.quantum.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften